一、进程间的通信方式

1. 进程间通信的概念

每个进程各自有不同的用户地址空间,任何一个进程的全局变量在另一个进程中都看不到,所以进程之间要交换数据必须通过内核,在内核中开辟一块缓冲区,进程1把数据从用户空间拷到内核缓冲区,进程2再从内核缓冲区把数据读走,内核提供的这种机制称为进程间通信(IPC,InterProcess Communication)
在这里插入图片描述

1.1. 进程通信的目的:

  • 数据传输
    一个进程需要将它的数据发送给另一个进程,发送的数据量在一个字节到几M字节之间

  • 共享数据
    多个进程想要操作共享数据,一个进程对共享数据

  • 通知事
    一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。

  • 资源共享
    多个进程之间共享同样的资源。为了作到这一点,需要内核提供锁和同步机制。

  • 进程控制
    有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另一个进程的所有陷入和异常,并能够及时知道它的状态改变。

1.2. Linux 进程间通信(IPC)的发展

linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的。而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间通信方面的侧重点有所不同。
AT&T的贝尔实验室对Unix早期的进程间通信手段进行了系统的改进和扩充,形成了“system V IPC”,通信进程局限在单个计算机内;
BSD则跳过了该限制,形成了基于套接口(socket)的进程间通信机制。
Linux则把两者继承了下来

  • 早期UNIX进程间通信
  • 基于System V进程间通信
  • 基于Socket进程间通信
  • POSIX进程间通信。

UNIX进程间通信方式包括:管道、FIFO、信号。
System V进程间通信方式包括:System V消息队列、System V信号灯、System V共享内存
POSIX进程间通信包括:posix消息队列、posix信号灯、posix共享内存。

2. 进程间通信的7种方式

第一类:传统的Unix通信机制

2.1. 管道/匿名管道(pipe)

无名管道:只存在于内存中的文件;命名管道:存在于实际的磁盘介质或者文件系统。

  • 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道。
  • 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);
  • 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
  • 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。
    在这里插入图片描述
    管道的实质:
    管道的实质是一个内核缓冲区,进程以先进先出的方式从缓冲区存取数据,管道一端的进程顺序的将数据写入缓冲区,另一端的进程则顺序的读出数据。该缓冲区可以看做是一个循环队列,读和写的位置都是自动增长的,不能随意改变,一个数据只能被读一次,读出来以后在缓冲区就不复存在了。当缓冲区读空或者写满时,有一定的规则控制相应的读进程或者写进程进入等待队列,当空的缓冲区有新数据写入或者满的缓冲区有数据读出来时,就唤醒等待队列中的进程继续读写。

管道的局限:
管道的主要局限性正体现在它的特点上:

  • 只支持单向数据流;
  • 只能用于具有亲缘关系的进程之间(通常是指父子进程关系);
  • 没有名字;
  • 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);
  • 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等;
    另一种管道: 流管道s_pipe: 去除了第一种限制,可以双向传输.
    pipe的例子:父进程创建管道,并在管道中写入数据,而子进程从管道读出数据
    在这里插入图片描述

2.2. 有名管道(FIFO)

匿名管道,由于没有名字,只能用于亲缘关系的进程间通信。为了克服这个缺点,提出了有名管道(FIFO)。有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。

有名管道不同于匿名管道之处在于它提供了一个路径名与之关联,以有名管道的文件形式存在于文件系统中,这样,即使与有名管道的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过有名管道相互通信,因此,通过有名管道不相关的进程也能交换数据。值的注意的是,有名管道严格遵循先进先出(first in first out),对匿名管道及有名管道的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。有名管道的名字存在于文件系统中,内容存放在内存中。
有名管道在磁盘上有对应的节点,但没有数据块——换言之,只是拥有一个名字和相应的访问权限,通过mknode()系统调用或者mkfifo()函数来建立的。一旦建立,任何进程都可以通过文件名将其打开和进行读写,而不局限于父子进程,当然前提是进程对FIFO有适当的访问权。当不再被进程使用时,FIFO在内存中释放,但磁盘节点仍然存在。

匿名管道和有名管道总结:
(1)管道是特殊类型的文件,在满足先入先出的原则条件下可以进行读写,但不能进行定位读写。
(2)匿名管道是单向的,只能在有亲缘关系的进程间通信;有名管道以磁盘文件的方式存在,可以实现本机任意两个进程通信。
(3)无名管道阻塞问题:无名管道无需显示打开,创建时直接返回文件描述符,在读写时需要确定对方的存在,否则将退出。如果当前进程向无名管道的一端写数据,必须确定另一端有某一进程。如果写入无名管道的数据超过其最大值,写操作将阻塞,如果管道中没有数据,读操作将阻塞,如果管道发现另一端断开,将自动退出。
(4)有名管道阻塞问题:有名管道在打开时需要确实对方的存在,否则将阻塞。即以读方式打开某管道,在此之前必须一个进程以写方式打开管道,否则阻塞。此外,可以以读写(O_RDWR)模式打开有名管道,即当前进程读,当前进程写,不会阻塞。
Linux中通过系统调用mknod()或makefifo()来创建一个命名管道。最简单的方式是通过直接使用shell

mkfifo myfifo

等价于

mknod myfifo p

以上命令在当前目录下创建了一个名为myfifo的命名管道。用ls -p命令查看文件的类型时,可以看到命名管道对应的文件名后有一条竖线"|",表示该文件不是普通文件而是命名管道。
使用open()函数通过文件名可以打开已经创建的命名管道,而无名管道不能由open来打开。当一个命名管道不再被任何进程打开时,它没有消失,还可以再次被打开,就像打开一个磁盘文件一样。可以用删除普通文件的方法将其删除,实际删除的是磁盘上对应的节点信息。

例子:用命名管道实现聊天程序,一个张三端,一个李四端。两个程序都建立两个命名管道,fifo1,fifo2,张三写fifo1,李四读fifo1;李四写fifo2,张三读fifo2。
用select把,管道描述符和stdin假如集合,用select进行阻塞,如果有i/o的时候唤醒进程。(粉红色部分为select部分,黄色部分为命名管道部分)
在这里插入图片描述在这里插入图片描述

2.3. 信号(Signal)

信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生,除了用于进程间通信外,进程还可以发送信号给进程本身。
信号是Linux系统中用于进程间互相通信或者操作的一种机制,信号可以在任何时候发给某一进程,而无需知道该进程的状态。
如果该进程当前并未处于执行状态,则该信号就由内核保存起来,直到该进程回复执行并传递给它为止。
如果一个信号被进程设置为阻塞,则该信号的传递被延迟,直到其阻塞被取消是才被传递给进程。
linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
Linux系统中常用信号:
(1)。SIGHUP:用户从终端注销,所有已启动进程都将收到该进程。系统缺省状态下对该信号的处理是终止进程。
(2)SIGINT:程序终止信号。程序运行过程中,按Ctrl+C键将产生该信号。
(3)SIGQUIT:程序退出信号。程序运行过程中,按Ctrl+\键将产生该信号。
(4)SIGBUS和SIGSEGV:进程访问非法地址。
(5)SIGFPE:运算中出现致命错误,如除零操作、数据溢出等。
(6)SIGKILL:用户终止进程执行信号。shell下执行kill -9发送该信号。
(7)SIGTERM:结束进程信号。shell下执行kill 进程pid发送该信号。
(8)SIGALRM:定时器信号。
(9)SIGCLD:子进程退出信号。如果其父进程没有忽略该信号也没有处理该信号,则子进程退出后将形成僵尸进程。
信号来源
信号是软件层次上对中断机制的一种模拟,是一种异步通信方式,,信号可以在用户空间进程和内核之间直接交互,内核可以利用信号来通知用户空间的进程发生了哪些系统事件,信号事件主要有两个来源:

  • 硬件来源:用户按键输入Ctrl+C退出、硬件异常如无效的存储访问等。
  • 软件终止:终止进程信号、其他进程调用kill函数、软件异常产生信号。
    信号生命周期和处理流程
    (1)信号被某个进程产生,并设置此信号传递的对象(一般为对应进程的pid),然后传递给操作系统;
    (2)操作系统根据接收进程的设置(是否阻塞)而选择性的发送给接收者,如果接收者阻塞该信号(且该信号是可以阻塞的),操作系统将暂时保留该信号,而不传递,直到该进程解除了对此信号的阻塞(如果对应进程已经退出,则丢弃此信号),如果对应进程没有阻塞,操作系统将传递此信号。
    (3)目的进程接收到此信号后,将根据当前进程对此信号设置的预处理方式,暂时终止当前代码的执行,保护上下文(主要包括临时寄存器数据,当前程序位置以及当前CPU的状态)、转而执行中断服务程序,执行完成后在回复到中断的位置。当然,对于抢占式内核,在中断返回时还将引发新的调度。
    在这里插入图片描述

2.4. 消息(Message)队列

  • 消息队列是存放在内核中的消息链表,每个消息队列由消息队列标识符表示。
  • 与管道(无名管道:只存在于内存中的文件;命名管道:存在于实际的磁盘介质或者文件系统)不同的是消息队列存放在内核中,只有在内核重启(即,操作系统重启)或者显示地删除一个消息队列时,该消息队列才会被真正的删除。
  • 另外与管道不同的是,消息队列在某个进程往一个队列写入消息之前,并不需要另外某个进程在该队列上等待消息的到达。延伸阅读:消息队列C语言的实践

消息队列特点总结:
(1)消息队列是消息的链表,具有特定的格式,存放在内存中并由消息队列标识符标识.
(2)消息队列允许一个或多个进程向它写入与读取消息.
(3)管道和消息队列的通信数据都是先进先出的原则。
(4)消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取.比FIFO更有优势。
(5)消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
(6)目前主要有两种类型的消息队列:POSIX消息队列以及System V消息队列,System V消息队列目前被大量使用。System V消息队列是随内核持续的,只有在内核重起或者人工删除时,该消息队列才会被删除。
消息队列的常用函数如下表:
在这里插入图片描述
进程间通过消息队列通信,主要是:创建或打开消息队列,添加消息,读取消息和控制消息队列。

2.5. 共享内存(share memory)

  • 使得多个进程可以直接读写同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。
  • 为了在多个进程间交换信息,内核专门留出了一块内存区,可以由需要访问的进程将其映射到自己的私有地址空间。进程就可以直接读写这一块内存而不需要进行数据的拷贝,从而大大提高效率。
  • 由于多个进程共享一段内存,因此需要依靠某种同步机制(如信号量)来达到进程间的同步及互斥。
    延伸阅读:Linux支持的主要三种共享内存方式:mmap()系统调用、Posix共享内存,以及System V共享内存实践
    共享内存允许两个或多个进程共享一个给定的存储区,这一段存储区可以被两个或两个以上的进程映射至自身的地址空间中,一个进程写入共享内存的信息,可以被其他使用这个共享内存的进程,通过一个简单的内存读取错做读出,从而实现了进程间的通信。
    采用共享内存进行通信的一个主要好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝,对于像管道和消息队里等通信方式,则需要再内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次:一次从输入文件到共享内存区,另一次从共享内存到输出文件。
    在这里插入图片描述
    在这里插入图片描述

共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。 它往往与其他通信机制,如信号量配合使用,来实现进程间的同步和通信。
一般而言,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时在重新建立共享内存区域;而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件,因此,采用共享内存的通信方式效率非常高。
在这里插入图片描述
共享内存有两种实现方式:1、内存映射 2、共享内存机制

2.5.1. 创建内存共享区

Linux 通过 shmget 方法创建与特定 key 关联的共享内存块:

//返回共享内存块的唯一 Id 标识

int shmget(key_t key, size_t size, int shmflg);
2.5.2.映射内存共享区

Linux 通过 shmat 方法将某内存块与当前进程某内存地址映射:

//成功返回指向共享存储段的指针

void *shmat(int shm_id, const void *shm_addr, int shmflg);
2.5.3.访问内存共享区

其他进程要访问一个已存在的内存共享区的话,可以通过 key 调用 shmget 获取到共享内存块 Id,然后调用 shmat 方法映射。

2.5.4.进程间通信

当两个进程都实现对同一块内存共享区做映射后,就可以利用此内存共享区进行数据交换,但要自己实现同步机制。

2.5.5.撤销内存映射

进程间通信结束后,各个进程需要撤销之前的映射,Linux 可以调用 shmdt 方法撤销映射:

//成功则返回 0,否则出错

int shmdt(const void *shmaddr);
2.5.6.删除内存共享区

最后需要删除内存共享区,以便回收内存,Linux 可以调用 shctl 进行删除:

//成功则返回 0,否则出错,删除操作 cmd 需传 IPC_RMID

int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

shmget 方法名言简意赅,share memory get !其中 get 还有一层含义,为什么不叫 create 呢?之前如果创建过某一 key 的共享内存块,再次调用便直接返回该内存块,不会发生创建操作了。

2.6. 信号量(semaphore)

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。
信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
因此,信号量主要作为进程间以及同一进程内不同线程之间的同步手段。
为了获得共享资源,进程需要执行下列操作:

(1)创建一个信号量:这要求调用者指定初始值,对于二值信号量来说,它通常是1,也可是0。
(2)等待一个信号量:该操作会测试这个信号量的值,如果小于0,就阻塞。也称为P操作。
(3)挂出一个信号量:该操作将信号量的值加1,也称为V操作。

为了正确地实现信号量,信号量值的测试及减1操作应当是原子操作。为此,信号量通常是在内核中实现的。Linux环境中,有三种类型:Posix(可移植性操作系统接口)有名信号量(使用Posix IPC名字标识)、Posix基于内存的信号量(存放在共享内存区中)、System V信号量(在内核中维护)。这三种信号量都可用于进程间或线程间的同步。
在这里插入图片描述
两个进程所以用一个Posix有名二值信号量
在这里插入图片描述
信号量与普通整型变量的区别:
(1)信号量是非负整型变量,除了初始化之外,它只能通过两个标准原子操作:wait(semap) , signal(semap) ; 来进行访问;

(2)操作也被成为PV原语(P来源于荷兰语proberen”测试”,V来源于荷兰语verhogen”增加”,P表示通过的意思,V表示释放的意思),而普通整型变量则可以在任何语句块中被访问;
信号量与互斥量之间的区别:

(1)互斥量用于线程的互斥,信号量用于线程的同步。这是互斥量和信号量的根本区别,也就是互斥和同步之间的区别。

互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。

同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。

在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源

(2)互斥量值只能为0/1,信号量值可以为非负整数。

也就是说,一个互斥量只能用于一个资源的互斥访问,它不能实现多个资源的多线程互斥问题。信号量可以实现多个同类资源的多线程互斥和同步。当信号量为单值信号量是,也可以完成一个资源的互斥访问。

(3)互斥量的加锁和解锁必须由同一线程分别对应使用,信号量可以由一个线程释放,另一个线程得到。
特点

  • 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
  • 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
  • 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
  • 支持信号量组。
    最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。
    Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。
#include <sys/sem.h>
// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
int semget(key_t key, int num_sems, int sem_flags);
// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
int semop(int semid, struct sembuf semoparray[], size_t numops);  
// 控制信号量的相关信息
int semctl(int semid, int sem_num, int cmd, ...);

2.7. 套接字(socket)

套接字是一种通信机制,凭借这种机制,客户/服务器(即要进行通信的进程)系统的开发工作既可以在本地单机上进行,也可以跨网络进行。也就是说它可以让不在同一台计算机但通过网络连接计算机上的进程进行通信。
起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。
在这里插入图片描述
Socket是应用层和传输层之间的桥梁

套接字是支持TCP/IP的网络通信的基本操作单元,可以看做是不同主机之间的进程进行双向通信的端点,简单的说就是通信的两方的一种约定,用套接字中的相关函数来完成通信过程。

套接字特性
套接字的特性由3个属性确定,它们分别是:域、端口号、协议类型。

(1)套接字的域
它指定套接字通信中使用的网络介质,最常见的套接字域有两种:

一是AF_INET,它指的是Internet网络。当客户使用套接字进行跨网络的连接时,它就需要用到服务器计算机的IP地址和端口来指定一台联网机器上的某个特定服务,所以在使用socket作为通信的终点,服务器应用程序必须在开始通信之前绑定一个端口,服务器在指定的端口等待客户的连接。

另一个域AF_UNIX,表示UNIX文件系统,它就是文件输入/输出,而它的地址就是文件名。

(2)套接字的端口号
每一个基于TCP/IP网络通讯的程序(进程)都被赋予了唯一的端口和端口号,端口是一个信息缓冲区,用于保留Socket中的输入/输出信息,端口号是一个16位无符号整数,范围是0-65535,以区别主机上的每一个程序(端口号就像房屋中的房间号),低于256的端口号保留给标准应用程序,比如pop3的端口号就是110,每一个套接字都组合进了IP地址、端口,这样形成的整体就可以区别每一个套接字。

(3)套接字协议类型
因特网提供三种通信机制,一是流套接字,流套接字在域中通过TCP/IP连接实现,同时也是AF_UNIX中常用的套接字类型。流套接字提供的是一个有序、可靠、双向字节流的连接,因此发送的数据可以确保不会丢失、重复或乱序到达,而且它还有一定的出错后重新发送的机制。
二个是数据报套接字,它不需要建立连接和维持一个连接,它们在域中通常是通过UDP/IP协议实现的。它对可以发送的数据的长度有限制,数据报作为一个单独的网络消息被传输,它可能会丢失、复制或错乱到达,UDP不是一个可靠的协议,但是它的速度比较高,因为它并一需要总是要建立和维持一个连接。

三是原始套接字,原始套接字允许对较低层次的协议直接访问,比如IP、 ICMP协议,它常用于检验新的协议实现,或者访问现有服务中配置的新设备,因为RAW SOCKET可以自如地控制Windows下的多种协议,能够对网络底层的传输机制进行控制,所以可以应用原始套接字来操纵网络层和传输层应用。比如,我们可以通过RAW SOCKET来接收发向本机的ICMP、IGMP协议包,或者接收TCP/IP栈不能够处理的IP包,也可以用来发送一些自定包头或自定协议的IP包。网络监听技术很大程度上依赖于SOCKET_RAW。
原始套接字与标准套接字的区别在于:
原始套接字可以读写内核没有处理的IP数据包,而流套接字只能读取TCP协议的数据,数据报套接字只能读取UDP协议的数据。因此,如果要访问其他协议发送数据必须使用原始套接字。

套接字通信的建立
在这里插入图片描述
服务器端
(1)首先服务器应用程序用系统调用socket来创建一个套接字,它是系统分配给该服务器进程的类似文件描述符的资源,它不能与其他的进程共享。

(2)然后,服务器进程会给套接字起个名字,我们使用系统调用bind来给套接字命名。然后服务器进程就开始等待客户连接到这个套接字。

(3)接下来,系统调用listen来创建一个队列并将其用于存放来自客户的进入连接。

(4)最后,服务器通过系统调用accept来接受客户的连接。它会创建一个与原有的命名套接不同的新套接字,这个套接字只用于与这个特定客户端进行通信,而命名套接字(即原先的套接字)则被保留下来继续处理来自其他客户的连接(建立客户端和服务端的用于通信的流,进行通信)。

客户端
(1)客户应用程序首先调用socket来创建一个未命名的套接字,然后将服务器的命名套接字作为一个地址来调用connect与服务器建立连接。

(2)一旦连接建立,我们就可以像使用底层的文件描述符那样用套接字来实现双向数据的通信(通过流进行数据传输)。

2.8.各种通信方式的比较和优缺点

各种通信方式的比较和优缺点
管道:速度慢,容量有限,只有父子进程能通讯
FIFO:任何进程间都能通讯,但速度慢
消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题
信号量:不能传递复杂消息,只能用来同步
共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存

如果用户传递的信息较少或是需要通过信号来触发某些行为.前文提到的软中断信号机制不失为一种简捷有效的进程间通信方式.

但若是进程间要求传递的信息量比较大或者进程间存在交换数据的要求,那就需要考虑别的通信方式了。

无名管道简单方便.但局限于单向通信的工作方式.并且只能在创建它的进程及其子孙进程之间实现管道的共享:

有名管道虽然可以提供给任意关系的进程使用.但是由于其长期存在于系统之中,使用不当容易出错.所以普通用户一般不建议使用。

消息缓冲可以不再局限于父子进程,而允许任意进程通过共享消息队列来实现进程间通信,并由系统调用函数来实现消息发送和接收之间的同步,从而使得用户在使用消息缓冲进行通信时不再需要考虑同步问题,使用方便,但是信息的复制需要额外消耗CPU的时间,不适宜于信息量大或操作频繁的场合。

共享内存针对消息缓冲的缺点改而利用内存缓冲区直接交换信息,无须复制,快捷、信息量大是其优点。

但是共享内存的通信方式是通过将共享的内存缓冲区直接附加到进程的虚拟地址空间中来实现的,因此,这些进程之间的读写操作的同步问题操作系统无法实现。必须由各进程利用其他同步工具解决。另外,由于内存实体存在于计算机系统中,所以只能由处于同一个计算机系统中的诸进程共享。不方便网络通信。

共享内存块提供了在任意数量的进程之间进行高效双向通信的机制。每个使用者都可以读取写入数据,但是所有程序之间必须达成并遵守一定的协议,以防止诸如在读取信息之前覆写内存空间等竞争状态的出现。

不幸的是,Linux无法严格保证提供对共享内存块的独占访问,甚至是在您通过使用IPC_PRIVATE创建新的共享内存块的时候也不能保证访问的独占性。 同时,多个使用共享内存块的进程之间必须协调使用同一个键值。

进程间通信各种方式效率比较

类型无连接可靠流控制记录消息类型优先级
普通PIPENYYN
流PIPENYYN
命名PIPE(FIFO)NYYN
消息队列NYYY
信号量NYYY
共享存储NYYY
UNIX流SOCKETNYYN
UNIX数据包SOCKETYYNN

注:

  • 无连接: 指无需调用某种形式的OPEN,就有发送消息的能力流控制:
  • 如果系统资源短缺或者不能接收更多消息,则发送进程能进行流量控制

二、线程间的通信方式

线程间的通信有两种情况:

  1. 一个进程中的线程与另外一个进程中的线程通信,由于两个线程只能访问自己所属进程的地址空间和资源,故等同于进程间的通信。
  2. 同一个进程中的两个线程进行通信。本文说的就是第二种情况。
    比起进程复杂的通信机制(管道、匿名管道、消息队列、信号量、共享内存、内存映射以及socket等),线程间通信要简单的多。

因为同一进程的不同线程共享同一份全局内存区域,其中包括初始化数据段、未初始化数据段,以及堆内存段,所以线程之间可以方便、快速地共享信息。只需要将数据复制到共享(全局或堆)变量中即可。不过,要避免出现多个线程试图同时修改同一份信息。
下图为多线程的进程地址空间:
在这里插入图片描述
线程安全:
所在的进程中有多个线程在同时运行,而这些线程可能会同时某一段代码。如果每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。线程安全就是说多线程访问同一段代码不会产生不确定的结果。编写线程安全的代码依靠 线程同步。

线程间的同步:
如果变量是只读的,多个线程同时读取该变量不会有一致性问题,但是,当一个线程可以修改的变量,其他线程也可以读取或者修改的时候,我们就需要对这些线程进行同步,确保它们在访问变量的存储内容时不会访问到无效的值。

1.锁机制: 包括互斥锁、条件变量、读写锁

  • 互斥锁提供了以排他方式防止数据结构被并发修改
  • 读写锁允许多个线程同时读共享数据,而对写操作是互斥的。
  • 条件变量可以以原子的方式阻塞进程,直到某个特定条件为真为止。对条 件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。

1.1. 互斥锁

互斥量本质上说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量。对互斥量进行枷锁以后,其他视图再次对互斥量加锁的线程都会被阻塞直到当前线程释放该互斥锁。如果释放互斥量时有一个以上的线程阻塞,那么所有该锁上的阻塞线程都会变成可运行状态,第一个变成运行状态的线程可以对互斥量加锁,其他线程就会看到互斥量依然是锁着,只能再次阻塞等待它重新变成可用,这样,一次只有一个线程可以向前执行。
常用头文件:

#include <pthread.h>

常用函数:

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);//互斥初始化
int pthread_mutex_destroy(pthread_mutex_t *mutex);//销毁互斥
int pthread_mutex_lock(pthread_mutex_t *mutex);//锁定互斥
int pthread_mutex_unlock(pthread_mutex_t *mutex);//解锁互斥
int pthread_mutex_trylock(pthread_mutex_t *mutex);//销毁互斥
eg.pthread_t mutex;
pthread_mutex_init(&mutex, NULL);
pthread_mutex_lock(&mutex);
...
pthread_mutex_unlock(&mutex);
pthread_mutex_detroy(&mutex);

互斥量的死锁:
一个线程需要访问两个或者更多不同的共享资源,而每个资源又有不同的互斥量管理。当超过一个线程加锁同一组互斥量时,就可能发生死锁。 死锁就是指多个线程/进程因竞争资源而造成的一种僵局(相互等待),若无外力作用,这些进程都将无法向前推进。
死锁的处理策略:
1、预防死锁:破坏死锁产生的四个条件:互斥条件、不剥夺条件、请求和保持条件以及循环等待条件。
2、避免死锁:在每次进行资源分配前,应该计算此次分配资源的安全性,如果此次资源分配不会导致系统进入不安全状态,那么将资源分配给进程,否则等待。算法:银行家算法。
3、检测死锁:检测到死锁后通过资源剥夺、撤销进程、进程回退等方法解除死锁。

1.2. 读写锁

读写锁与互斥量类似,不过读写锁拥有更高的并行性。互斥量要么是锁住状态,要么是不加锁状态,而且一次只有一个线程可以对其加锁。读写锁有3种状态:读模式下加锁状态,写模式下加锁状态,不加锁状态。一次只有一个线程可以占有写模式的读写锁,但是多个线程可以同时占有读模式的读写锁。
当读写锁是写加锁状态时,在这个锁被解锁之前,所有视图对这个锁加锁的线程都会被阻塞。当读写锁在读加锁状态时,所有试图以读模式对它进行加锁的线程都可以得到访问权,但是任何希望以写模式对此锁进行加锁的线程都会阻塞,直到所有的线程释放它们的读锁为止。
常用头文件:

#include <pthread.h>

常用函数:

int pthread_rwlock_init(pthread_rwlock_t *rwlock, const pthread_rwlockattr_t *rwlockattr);//初始化读写锁
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);//销毁读写锁
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);//读模式锁定读写锁
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);//写模式锁定读写锁
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);//解锁读写锁
eg.pthread_rwlock_t q_lock;
pthread_rwlock_init(&q_lock, NULL);
pthread_rwlock_rdlock(&q_lock);
...
pthread_rwlock_unlock(&q_lock);
pthread_rwlock_detroy(&q_lock);

1.3. 自旋锁

自旋锁与互斥量类似,但它不是通过休眠使进程阻塞,而是在获取锁之前一直处于忙等(自旋)阻塞状态。自旋锁可以用于以下情况:锁被持有的时间短,而且线程并不希望在重新调度上花费太多的成本。

2.信号量机制(Semaphore): 包括无名线程信号量和命名线程信号量

线程的信号和进程的信号量类似,使用线程的信号量可以高效地完成基于线程的资源计数。信号量实际上是一个非负的整数计数器,用来实现对公共资源的控制。在公共资源增加的时候,信号量就增加;公共资源减少的时候,信号量就减少;只有当信号量的值大于0的时候,才能访问信号量所代表的公共资源。
常用头文件:

#include <semaphore.h>

常用函数:

sem_t sem_event;
int sem_init(sem_t *sem, int pshared, unsigned int value);//初始化一个信号量 
int sem_destroy(sem_t * sem);//销毁信号量
int sem_post(sem_t * sem);//信号量增加1
int sem_wait(sem_t * sem);//信号量减少1
int sem_getvalue(sem_t * sem, int * sval);//获取当前信号量的值

3. 信号机制(Signal): 类似进程间的信号处理

线程间的通信目的主要是用于线程同步,所以线程没有像进程通信中的用于 数据交换的通信机制。

4. 条件变量

条件变量是线程可用的另一种同步机制。互斥量用于上锁,条件变量则用于等待,并且条件变量总是需要与互斥量一起使用,运行线程以无竞争的方式等待特定的条件发生。
条件变量本身是由互斥量保护的,线程在改变条件变量之前必须首先锁住互斥量。其他线程在获得互斥量之前不会察觉到这种变化,因为互斥量必须在锁定之后才能计算条件。
常用头文件:

#include <pthread.h>

常用函数:

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);//初始化条件变量
int pthread_cond_destroy(pthread_cond_t *cond);//销毁条件变量
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);//无条件等待条件变量变为真
int pthread_cond_timewait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *tsptr);//在给定时间内,等待条件变量变为真

eg.pthread_mutex_t mutex;
pthread_cond_t cond;
...
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
...
pthread_mutex_unlock(&mutex);


注意: pthread_cond_wait 执行的流程首先将这个mutex解锁, 然后等待条件变量被唤醒, 如果没有被唤醒, 该线程将一直休眠, 也就是说, 该线程将一直阻塞在这个pthread_cond_wait调用中, 而当此线程被唤醒时, 将自动将这个mutex加锁,然后再进行条件变量判断(原因是“惊群效应”,如果是多个线程都在等待这个条件,而同时只能有一个线程进行处理,此时就必须要再次条件判断,以使只有一个线程进入临界区处理。),如果满足,则线程继续执行。

三、互斥与同步:

互斥与同步的区别:
互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。
同步:主要是流程上的概念,是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。

互斥锁、条件变量和信号量的区别:
互斥锁:互斥,一个线程占用了某个资源,那么其它的线程就无法访问,直到这个线程解锁,其它线程才可以访问。
条件变量:同步,一个线程完成了某一个动作就通过条件变量发送信号告诉别的线程,别的线程再进行某些动作。条件变量必须和互斥锁配合使用。
信号量:同步,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作。而且信号量有一个更加强大的功能,信号量可以用作为资源计数器,把信号量的值初始化为某个资源当前可用的数量,使用一个之后递减,归还一个之后递增。

另外还有以下几点需要注意:
1、信号量可以模拟条件变量,因为条件变量和互斥量配合使用,相当于信号量模拟条件变量和互斥量的组合。在生产者消费者线程池中,生产者生产数据后就会发送一个信号 pthread_cond_signal通知消费者线程,消费者线程通过pthread_cond_wait等待到了信号就可以继续执行。这是用条件变量和互斥锁实现生产者消费者线程的同步,用信号量一样可以实现!
2、信号量可以模拟互斥量,因为互斥量只能为加锁或解锁(0 or 1),信号量值可以为非负整数,也就是说,一个互斥量只能用于一个资源的互斥访问,它不能实现多个资源的多线程互斥问题。信号量可以实现多个同类资源的多线程互斥和同步。当信号量为单值信号量时,就完成一个资源的互斥访问。前面说了,信号量主要用做多线程多任务之间的同步,而同步能够控制线程访问的流程,当信号量为单值时,必须有线程释放,其他线程才能获得,同一个时刻只有一个线程在运行(注意,这个运行不一定是访问资源,可能是计算)。如果线程是在访问资源,就相当于实现了对这个资源的互斥访问。
3、互斥锁是为上锁而优化的;条件变量是为等待而优化的; 信号量既可用于上锁,也可用于等待,因此会有更多的开销和更高的复杂性。
4、互斥锁,条件变量都只用于同一个进程的各线程间,而信号量(有名信号量)可用于不同进程间的同步。当信号量用于进程间同步时,要求信号量建立在共享内存区。
5、互斥量必须由同一线程获取以及释放,信号量和条件变量则可以由一个线程释放,另一个线程得到。
6、信号量的递增和减少会被系统自动记住,系统内部的计数器实现信号量,不必担心丢失,而唤醒一个条件变量时,如果没有相应的线程在等待该条件变量,此次唤醒会被丢失。

参考:
http://www.androidchina.net/10130.html
https://my.oschina.net/glfei/blog/3166368
https://blog.csdn.net/gatieme/article/details/50908749
https://blog.csdn.net/zhaohong_bo/article/details/89552188?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-3.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-3.control
https://kernel.blog.csdn.net/article/details/50908749?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-11.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-11.control

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐