回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出
回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出目录回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型数据下载程序设计预测效果参考资料致谢基本介绍本次运行测试环境MATLAB2020b;本次预测基本任务是回归,多变量输入,单变量输出;主要研究问题不限于交通预测
回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出
基本介绍
本次运行测试环境MATLAB2020b;
本次预测基本任务是回归,多变量输入,单变量输出;
主要研究问题不限于交通预测、负荷预测、气象预测、经济预测等。
PSO-LSTM多变量输入单变量输出,粒子群优化长短期记忆神经网络的隐藏层单元和初始学习率,组合预测具体介绍如下。
模型介绍
提出一种基于粒子群优化( PSO) 的长短期记忆( LSTM) 预测模型( PSO-LSTM) ,该模型在LSTM 模型的基础上进行改进和优化,因此擅长处理具有长期依赖关系的、复杂的非线性问题。通过自适应学习策略的PSO 算法对LSTM 模型的关键参数进行寻优,使数据特征与网络拓扑结构相匹配,提高预测精度。
PSO模型
- 粒子群算法的思想源于对鸟类社会行为的研究。鸟群捕食最简单有效的方法是搜索距离食物最近的鸟的所在区域,通过个体间的协助和信息共享实现群体进化。
- 算法将群体中的个体看作多维搜索空间中的一个粒子,每个粒子代表问题的一个可能解,其特征信息用位置、速度和适应度值3 种指标描述,适应度值由适应度函数计算得到,适应度值的大小代表粒子的优劣。
- 粒子以一定的速度“飞行”,根据自身及其他粒子的移动经验,即自身和群体最优适应度值,改变移动的方向和距离。不断迭代寻找较优区域,从而完成在全局搜索空间中的寻优过程。
LSTM模型
- LSTM 是一种特殊的循环神经网络。它通过精心设计“门”结构,避免了传统循环神经网络产生的梯度消失与梯度爆炸问题,能有效地学习到
长期依赖关系。因此,在处理时间序列的预测和分类问题中,具有记忆功能的LSTM 模型表现出较强的优势。
PSO-LSTM模型
- 将LSTM初始学习率、隐藏层单元数目作为PSO 算法的优化对象,根
据超参数取值范围随机初始化各粒子位置信息。 - 其次,根据粒子位置对应的超参数取值建立LSTM 模型,利用训练数据对模型进行训练。将验证数据代入训练好的模型进行预测,以模型在
验证数据集上的均方误差作为粒子适应度值。
- PSO-LSTM 模型算法流程如下:
- 步骤1 将实验数据分为训练数据、验证数据和测试数据。
- 步骤2 将LSTM 模型中时间窗口大小、批处理大小、神经网络隐藏层单元数目作为优化对象,初始化自适应PSO 算法。
- 步骤3 划分子群。
- 步骤4 计算每个粒子的适应度值。以各粒子对应参数构建LSTM 模型,通过训练数据进行训练,验证数据进行预测,将预测结果的平均绝对百分比误差作为各粒子的适应度值。
- 步骤5 根据粒子适应度值与种群划分结果,确定全局最优粒子位置pbest 和局部最优粒子位置gbest。
- 步骤6 根据PSO 算法的分别对普通粒子和局部最优粒子位置进行更新。
- 步骤7 判断终止条件。若满足终止条件,返回最优超参数取值; 否则,返回步骤3。
- 步骤8 利用最优超参数构建LSTM 模型。
- 步骤9 模型通过训练数据和验证数据进行训练,测试集进行预测,得到预测结果。
程序设计
- 完整程序和数据下载地址方式1:PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出
- 完整程序和数据下载地址方式2:订阅《LSTM长短期记忆神经网络》专栏,订阅后两天内私信博主获取程序和数据。
% 1. 寻找最佳参数
NN=5; %初始化群体个数
D=2; %初始化群体维数,
T=10; %初始化群体最迭代次数
c1=2; %学习因子1
c2=2; %学习因子2
%用线性递减因子粒子群算法
Wmax=1.2; %惯性权重最大值
Wmin=0.8; %惯性权重最小值
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%每个变量的取值范围
ParticleScope(1,:)=[10 200]; % 中间层神经元个数
ParticleScope(2,:)=[0.01 0.15]; % 学习率
ParticleScope=ParticleScope';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xv=rand(NN,2*D); %首先,初始化种群个体速度和位置
for d=1:D
xv(:,d)=xv(:,d)*(ParticleScope(2,d)-ParticleScope(1,d))+ParticleScope(1,d);
xv(:,D+d)=(2*xv(:,D+d)-1 )*(ParticleScope(2,d)-ParticleScope(1,d))*0.2;
end
x1=xv(:,1:D);%位置
v1=xv(:,D+1:2*D);%速度
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------初始化个体位置和适应度值-----------------
p1=x1;
pbest1=ones(NN,1);
for i=1:NN
pbest1(i)=fitness(x1(i,:));
end
%------初始时全局最优位置和最优值---------------
gbest1=min(pbest1);
lab=find(min(pbest1)==pbest1);
g1=x1(lab,:);
gb1=ones(1,T);
预测效果
Matlab实现PSO-LSTM多变量回归预测
1.input和output为数据集,input为输入数据,output为输出数据。
2.PSO_LSTM.m为程序主文件,fitness为函数文件无需运行。
3.命令窗口输出R2、MAE和RMSE,可在下载区获取数据和程序内容。
4.粒子群优化LSTM,优化隐含层单元数量和初始学习率。
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上.
参考资料
[1] https://blog.csdn.net/kjm13182345320?spm=1010.2135.3001.5343
[2] https://mianbaoduo.com/o/bread/mbd-YpiamZpq
[3] SI Y W,YIN J. OBST-based segmentation approach to financial time series[J]. Engineering Applications of Artificial Intelligence,2013,26( 10) : 2581-2596.
[4] YUAN X,CHEN C,JIANG M,et al. Prediction Interval of Wind Power Using Parameter Optimized Beta Distribution Based LSTM Model[J]. Applied Soft Computing,2019,82:105550.143
致谢
- 大家的支持是我写作的动力!
- 感谢大家订阅,记得备注!
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)