源码链接:https://download.csdn.net/download/bibinGee/12327301

 

此算法基于(但不是完全重现)Audacity概述的一种降噪效果的算法(链接到C ++代码)
该算法需要两个输入:

  1. 包含音频片段原型噪声的噪声音频片段
  2. 包含要删除的信号和噪声的信号音频片段

算法步骤

  1. 在噪声音频片段上计算FFT
  2. 统计信息是通过噪声的FFT计算得出的(频率)
  3. 基于噪声的统计信息(和算法的期望灵敏度)计算阈值
  4. 通过信号计算FFT
  5. 通过将信号FFT与阈值进行比较来确定掩码
  6. 使用滤镜在频率和时间上对蒙版进行平滑处理
  7. 掩码被叠加到信号的FFT中,并被反转

 

wav_loc = "assets/audio/fish.wav"
rate, data = wavfile.read(wav_loc)
data = data / 32768
def fftnoise(f):
    f = np.array(f, dtype="complex")
    Np = (len(f) - 1) // 2
    phases = np.random.rand(Np) * 2 * np.pi
    phases = np.cos(phases) + 1j * np.sin(phases)
    f[1 : Np + 1] *= phases
    f[-1 : -1 - Np : -1] = np.conj(f[1 : Np + 1])
    return np.fft.ifft(f).real


def band_limited_noise(min_freq, max_freq, samples=1024, samplerate=1):
    freqs = np.abs(np.fft.fftfreq(samples, 1 / samplerate))
    f = np.zeros(samples)
    f[np.logical_and(freqs >= min_freq, freqs <= max_freq)] = 1
IPython.display.Audio(data=data, rate=rate)
fig, ax = plt.subplots(figsize=(20,4))
ax.plot(data)

 

加入噪声

noise_len = 2 # seconds
noise = band_limited_noise(min_freq=4000, max_freq = 12000, samples=len(data), samplerate=rate)*10
noise_clip = noise[:rate*noise_len]
audio_clip_band_limited = data+noise
fig, ax = plt.subplots(figsize=(20,4))
ax.plot(audio_clip_band_limited)
IPython.display.Audio(data=audio_clip_band_limited, rate=rate)

加入噪声后的波形: 

 

去噪

import time
from datetime import timedelta as td


def _stft(y, n_fft, hop_length, win_length):
    return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)


def _istft(y, hop_length, win_length):
    return librosa.istft(y, hop_length, win_length)


def _amp_to_db(x):
    return librosa.core.amplitude_to_db(x, ref=1.0, amin=1e-20, top_db=80.0)


def _db_to_amp(x,):
    return librosa.core.db_to_amplitude(x, ref=1.0)


def plot_spectrogram(signal, title):
    fig, ax = plt.subplots(figsize=(20, 4))
    cax = ax.matshow(
        signal,
        origin="lower",
        aspect="auto",
        cmap=plt.cm.seismic,
        vmin=-1 * np.max(np.abs(signal)),
        vmax=np.max(np.abs(signal)),
    )
    fig.colorbar(cax)
    ax.set_title(title)
    plt.tight_layout()
    plt.show()


def plot_statistics_and_filter(
    mean_freq_noise, std_freq_noise, noise_thresh, smoothing_filter
):
    fig, ax = plt.subplots(ncols=2, figsize=(20, 4))
    plt_mean, = ax[0].plot(mean_freq_noise, label="Mean power of noise")
    plt_std, = ax[0].plot(std_freq_noise, label="Std. power of noise")
    plt_std, = ax[0].plot(noise_thresh, label="Noise threshold (by frequency)")
    ax[0].set_title("Threshold for mask")
    ax[0].legend()
    cax = ax[1].matshow(smoothing_filter, origin="lower")
    fig.colorbar(cax)
    ax[1].set_title("Filter for smoothing Mask")
    plt.show()


def removeNoise(
    audio_clip,
    noise_clip,
    n_grad_freq=2,
    n_grad_time=4,
    n_fft=2048,
    win_length=2048,
    hop_length=512,
    n_std_thresh=1.5,
    prop_decrease=1.0,
    verbose=False,
    visual=False,
):
    """Remove noise from audio based upon a clip containing only noise

    Args:
        audio_clip (array): The first parameter.
        noise_clip (array): The second parameter.
        n_grad_freq (int): how many frequency channels to smooth over with the mask.
        n_grad_time (int): how many time channels to smooth over with the mask.
        n_fft (int): number audio of frames between STFT columns.
        win_length (int): Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`..
        hop_length (int):number audio of frames between STFT columns.
        n_std_thresh (int): how many standard deviations louder than the mean dB of the noise (at each frequency level) to be considered signal
        prop_decrease (float): To what extent should you decrease noise (1 = all, 0 = none)
        visual (bool): Whether to plot the steps of the algorithm

    Returns:
        array: The recovered signal with noise subtracted

    """
    if verbose:
        start = time.time()
    # STFT over noise
    noise_stft = _stft(noise_clip, n_fft, hop_length, win_length)
    noise_stft_db = _amp_to_db(np.abs(noise_stft))  # convert to dB
    # Calculate statistics over noise
    mean_freq_noise = np.mean(noise_stft_db, axis=1)
    std_freq_noise = np.std(noise_stft_db, axis=1)
    noise_thresh = mean_freq_noise + std_freq_noise * n_std_thresh
    if verbose:
        print("STFT on noise:", td(seconds=time.time() - start))
        start = time.time()
    # STFT over signal
    if verbose:
        start = time.time()
    sig_stft = _stft(audio_clip, n_fft, hop_length, win_length)
    sig_stft_db = _amp_to_db(np.abs(sig_stft))
    if verbose:
        print("STFT on signal:", td(seconds=time.time() - start))
        start = time.time()
    # Calculate value to mask dB to
    mask_gain_dB = np.min(_amp_to_db(np.abs(sig_stft)))
    print(noise_thresh, mask_gain_dB)
    # Create a smoothing filter for the mask in time and frequency
    smoothing_filter = np.outer(
        np.concatenate(
            [
                np.linspace(0, 1, n_grad_freq + 1, endpoint=False),
                np.linspace(1, 0, n_grad_freq + 2),
            ]
        )[1:-1],
        np.concatenate(
            [
                np.linspace(0, 1, n_grad_time + 1, endpoint=False),
                np.linspace(1, 0, n_grad_time + 2),
            ]
        )[1:-1],
    )
    smoothing_filter = smoothing_filter / np.sum(smoothing_filter)
    # calculate the threshold for each frequency/time bin
    db_thresh = np.repeat(
        np.reshape(noise_thresh, [1, len(mean_freq_noise)]),
        np.shape(sig_stft_db)[1],
        axis=0,
    ).T
    # mask if the signal is above the threshold
    sig_mask = sig_stft_db < db_thresh
    if verbose:
        print("Masking:", td(seconds=time.time() - start))
        start = time.time()
    # convolve the mask with a smoothing filter
    sig_mask = scipy.signal.fftconvolve(sig_mask, smoothing_filter, mode="same")
    sig_mask = sig_mask * prop_decrease
    if verbose:
        print("Mask convolution:", td(seconds=time.time() - start))
        start = time.time()
    # mask the signal
    sig_stft_db_masked = (
        sig_stft_db * (1 - sig_mask)
        + np.ones(np.shape(mask_gain_dB)) * mask_gain_dB * sig_mask
    )  # mask real
    sig_imag_masked = np.imag(sig_stft) * (1 - sig_mask)
    sig_stft_amp = (_db_to_amp(sig_stft_db_masked) * np.sign(sig_stft)) + (
        1j * sig_imag_masked
    )
    if verbose:
        print("Mask application:", td(seconds=time.time() - start))
        start = time.time()
    # recover the signal
    recovered_signal = _istft(sig_stft_amp, hop_length, win_length)
    recovered_spec = _amp_to_db(
        np.abs(_stft(recovered_signal, n_fft, hop_length, win_length))
    )
    if verbose:
        print("Signal recovery:", td(seconds=time.time() - start))
    if visual:
        plot_spectrogram(noise_stft_db, title="Noise")
    if visual:
        plot_statistics_and_filter(
            mean_freq_noise, std_freq_noise, noise_thresh, smoothing_filter
        )
    if visual:
        plot_spectrogram(sig_stft_db, title="Signal")
    if visual:
        plot_spectrogram(sig_mask, title="Mask applied")
    if visual:
        plot_spectrogram(sig_stft_db_masked, title="Masked signal")
    if visual:
        plot_spectrogram(recovered_spec, title="Recovered spectrogram")
    return recovered_signal
output = removeNoise(audio_clip=audio_clip_band_limited,noise_clip=noise_clip,verbose=True,visual=True)

 

 

 

 

 

 

fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4))
plt.plot(output, color='black')
ax.set_xlim((0, len(output)))
plt.show()
# play back a sample of the song
IPython.display.Audio(data=output, rate=44100)

去噪后的波形:

 

让我们尝试一个更具挑战性的示例

wav_loc = "assets/audio/fish.wav"
src_rate, src_data = wavfile.read(wav_loc)
# src_data = np.concatenate((src_data, np.zeros(src_rate*3)))
src_data = src_data / 32768
wav_loc = "assets/audio/cafe.wav"
noise_rate, noise_data = wavfile.read(wav_loc)
# get some noise to add to the signal
noise_to_add = noise_data[len(src_data) : len(src_data) * 2]
# get a different part of the noise clip for calculating statistics
noise_clip = noise_data[: len(src_data)]
noise_clip = noise_clip / max(noise_to_add)
noise_to_add = noise_to_add / max(noise_to_add)
# apply noise
snr = 1  # signal to noise ratio
audio_clip_cafe = src_data + noise_to_add / snr
noise_clip = noise_clip / snr
fig, ax = plt.subplots(figsize=(20, 4))
ax.plot(noise_clip)
IPython.display.Audio(data=noise_clip, rate=src_rate)

强干扰噪声波形


fig, ax = plt.subplots(figsize=(20,4))
ax.plot(audio_clip_cafe)
IPython.display.Audio(data=audio_clip_cafe, rate=src_rate)

信号加上强干扰噪声后

 

执行去噪

output = removeNoise(
    audio_clip=audio_clip_cafe,
    noise_clip=noise_clip,
    n_std_thresh=2,
    prop_decrease=0.95,
    visual=True,
)

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 4))
plt.plot(output, color="black")
ax.set_xlim((0, len(output)))
plt.show()
# play back a sample of the song
IPython.display.Audio(data=output, rate=44100)

去噪后的信号

 

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐