desolve函数

S = dsolve(eqn)求解微分方程eqn,其中eqn是符号方程。使用diff和==来表示微分方程。例如,diff(y,x) == y表示方程dy / dx  =  y。通过指定 eqn为这些方程的向量来求解微分方程组。

S = dsolve(eqn,cond)eqn用初始或边界条件求解cond。

S = dsolve(___,Name,Value) 使用由一个或多个Name,Value对参数指定的附加选项。

[y1,...,yN] = dsolve(___)将解分配给变量y1,...,yN。

求解y关于什么的函数就要声明为y (x) ,必须使用syms来声变量, 否则会被警告

实例1

d d x y ⁡ ( t ) = − 3 y ⁡ ( t ) \frac{d}{{dx}}\operatorname{y} \left( t \right) = - 3\operatorname{y} \left( t \right) dxdy(t)=3y(t)

%案例一
clear all
clc
syms y(t); 
eqn=diff(y,t) == -3*y
F=dsolve(eqn)
latex(F)

在这里插入图片描述
C 1   e − 3   t C_{1}\,{\mathrm{e}}^{-3\,t} C1e3t

实例2

%案例二
clear all
clc
syms y(t) a
eqn = diff(y,t) == a*y
S = dsolve(eqn)

结果和上面相似

实例3

d d x y ⁡ ( t ) = 3 x 2 \frac{d}{{dx}}\operatorname{y} \left( t \right) = 3{x^2} dxdy(t)=3x2

%案例三
clear all
clc
syms y(t) x
eqn=diff(y,t)==3*x^2
F=dsolve(eqn) 
latex(F)

在这里插入图片描述
3   t   x 2 + C 1 3\,t\,x^2+C_{1} 3tx2+C1

实例4

d 2 d x 2 y ⁡ ( t ) = a y ⁡ ( t ) \frac{{{d^2}}}{{d{x^2}}}\operatorname{y} \left( t \right) = a\operatorname{y} \left( t \right) dx2d2y(t)=ay(t)

%二阶案例一
clear all
clc
syms y(t) a
eqn = diff(y,t,2) == a*y
ySol(t) = dsolve(eqn)
latex(ySol(t))

在这里插入图片描述
C 1   e − a   t + C 2   e a   t C_{1}\,{\mathrm{e}}^{-\sqrt{a}\,t}+C_{2}\,{\mathrm{e}}^{\sqrt{a}\,t} C1ea t+C2ea t

求解有条件的微分方程

d y d t = z d z d t = − y \begin{gathered} \frac{{dy}}{{dt}} = z \\ \frac{{dz}}{{dt}} = - y \\ \end{gathered} dtdy=zdtdz=y

%有条件的微分方程
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y]
S = dsolve(eqns)

dsolve返回一个包含解的结构
在这里插入图片描述

%有条件的微分方程案例1
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y]
S = dsolve(eqns)
ySol(t) = S.y
zSol(t) = S.z

在这里插入图片描述
C 1   cos ⁡ ( t ) + C 2   sin ⁡ ( t ) C_{1}\,\cos\left(t\right)+C_{2}\,\sin\left(t\right) C1cos(t)+C2sin(t)
C 2   cos ⁡ ( t ) − C 1   sin ⁡ ( t ) C_{2}\,\cos\left(t\right)-C_{1}\,\sin\left(t\right) C2cos(t)C1sin(t)
( ∂ ∂ t y ⁡ ( t ) = 4 z ⁡ ( t )   ∂ ∂ t z ⁡ ( t ) = − 3 y ⁡ ( t ) ) \left( {\frac{\partial }{{\partial t}}\operatorname{y} \left( t \right) = 4\operatorname{z} \left( t \right)\,\frac{\partial }{{\partial t}}\operatorname{z} \left( t \right) = -3\operatorname{y} \left( t \right)} \right) (ty(t)=4z(t)tz(t)=3y(t))

%有条件的微分方程案例2
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == 4*z, diff(z,t) == -3*y]
S = dsolve(eqns)
ySol(t) = S.y
zSol(t) = S.z

在这里插入图片描述
其实也可以直接用

%输出分配
[ySol(t),zSol(t)] = dsolve(eqns)

在这里插入图片描述

微分方程显示隐式解

∂ ∂ x y ⁡ ( x ) = e − y ⁡ ( x ) + y ⁡ ( x ) \frac{\partial }{{\partial x}}\operatorname{y} \left( x \right) = {e^{ - \operatorname{y} \left( x \right)}} + \operatorname{y} \left( x \right) xy(x)=ey(x)+y(x)

%这里我们设置"Inplicit"为True
sol = dsolve(eqn,'Implicit',true)
%求微分方程的显式和隐式解
clear all
clc
syms y(x)
eqn = diff(y) == y+exp(-y)
sol = dsolve(eqn)
sol = dsolve(eqn,'Implicit',true)

在这里插入图片描述

未找到显式解决方案时查找隐式解决方案

∂ ∂ t y ⁡ ( x ) = y ⁡ ( x ) + a y ⁡ ( x ) \frac{\partial }{{\partial t}}\operatorname{y} \left( x \right) = \operatorname{y} \left( x \right) + \frac{a}{{\sqrt {\operatorname{y} \left( x \right)} }} ty(x)=y(x)+y(x) a
同时我们已知 y ( a ) = 1 y(a)=1 y(a)=1

%当未找到显式解决方案时查找隐式解决方案
clear all
clc
syms a y(t)
eqn = diff(y,t) == a/sqrt(y) + y
cond = y(a) == 1;
ySimplified = dsolve(eqn, cond)

在这里插入图片描述若要返回包含参数a的所有可能值的解决方案,请通过将"lgnoreAnalyticConstraints"设置为false来关闭简化。

yNotSimplified = dsolve(eqn,cond,'IgnoreAnalyticConstraints',false)

%当未找到显式解决方案时查找隐式解决方案
clear all
clc
syms a y(x)
eqn = diff(y,x) == a/sqrt(y) + y
cond = y(a) == 1;
ySimplified = dsolve(eqn, cond)
yNotSimplified = dsolve(eqn,cond,'IgnoreAnalyticConstraints',false)

在这里插入图片描述

求微分方程级数解

dsolve返回包含未计算积分项的解
( x + 1 ) ∂ ∂ x y ⁡ ( x ) − y ⁡ ( x ) + ∂ 2 ∂ x 2 y ⁡ ( x ) = 0 \left( {x + 1} \right)\frac{\partial }{{\partial x}}\operatorname{y} \left( x \right) - \operatorname{y} \left( x \right) + \frac{{{\partial ^2}}}{{\partial {x^2}}}\operatorname{y} \left( x \right) = 0 (x+1)xy(x)y(x)+x22y(x)=0

%级数1
clear all
clc
syms y(x)
eqn = (x^2-1)^2*diff(y,2) + (x+1)*diff(y) - y == 0
S = dsolve(eqn)

在这里插入图片描述
但是若要返回x=-1附近微分方程的级数解,请将“ExpansionPoint"设置为 -1。dsolve 根据Puiseux级数展开返回两1个线性无关的解。

在这里插入图片描述
通过将‘ExpansionPoint’设置为 I n f Inf Inf,找到围绕扩展点 ∞ \infty 的其他级数解
在这里插入图片描述

为具有不同单边限制的函数指定初始条件(特解)

∂ ∂ x y ⁡ ( x ) = e − 1 x x 2 \frac{\partial }{{\partial x}}\operatorname{y} \left( x \right) = \frac{{{e^{ - \frac{1}{x}}}}}{{{x^2}}} xy(x)=x2ex1

%添加条件
clear all
clc
syms y(x)
eqn = diff(y) == exp(-1/x)/x^2
ySol(x) = dsolve(eqn)

在这里插入图片描述
设初始条件 y ( 0 ) = 2 y(0)=2 y(0)=2,则须添加下列代码:

cond = y(0) == 2;
S = dsolve(eqn,cond)

在这里插入图片描述

练习题

可以直接敲代码试试
d y d t + 4 y ⁡ ( t ) = e − t , y ( 0 ) = 1 \frac{{dy}}{{dt}} + 4\operatorname{y} \left( t \right) = {e^{ - t}},y(0)=1 dtdy+4y(t)=et,y(0)=1
在这里插入图片描述
2 x 2 d 2 y d x 2 + 3 x d y d x − y = 0 2{x^2}\frac{{{d^2}y}}{{d{x^2}}} + 3x\frac{{dy}}{{dx}} - y = 0 2x2dx2d2y+3xdxdyy=0
在这里插入图片描述
The Airy equation.
d 2 y d x 2 = x y ⁡ ( x ) \frac{{{d^2}y}}{{d{x^2}}} = x\operatorname{y} \left( x \right) dx2d2y=xy(x)
在这里插入图片描述

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐