1.WS2812

    WS2812实物图如下所示:
WS2812模块

WS2812模块

    WS2812的特点如下:

WS2812智能外控集成LED 光源
主要特点:

  • 控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。
  • 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
  • 内置上电复位和掉电复位电路。
  • 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示,扫描频率不低于400Hz/s。
  • 串行级联接口,能通过一根信号线完成数据的接收与解码。
  • 任意两点传传输距离在不超过5米时无需增加任何电路。
  • 当刷新速率30帧/秒时,低速模式级联数不小于512点,高速模式不小于1024点。
  • 数据发送速度可达800Kbps。
  • 光的颜色高度一致,性价比高。

    其主要应用领域有LED全彩发光字灯串,全彩LED模组,LED像素屏,各种电子产品,电子设备跑马灯等。
    WS2812最牛的地方除了内部包含了智能数字接口数据锁存信号整形放大驱动电路高精度内部振荡器外,还采用了单线归零码的通讯方式:每个WS2812在上电复位以后,DIN端接收从控制器传输过来的数据,首先送过来的24bit数据被第一个WS2812提取后,送到其内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的WS2812,每经过一个WS2812的传输,信号减少24bit。每个WS2812采用自动整形转发技术,使得该WS2812的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。
    采用这种通信方式的好处是大大节约了单片机管脚资源。例如做一个流水灯,如果采用传统的LED一般情况需要跟LED数量相同的单片机引脚(想想就心疼),但是使用WS2812就不一样了,一个单片机引脚就可以控制百级数量的灯带,而且还是全彩的,是不是感觉很神奇,很方便。由于WS2812采用单线的通信方式,其通过不同的脉冲长度来表示。
WS2812逻辑0和逻辑1时序波形

WS2812逻辑0和逻辑1时序波形

WS2812数据传输时间(TH+TL=1.25μs±600ns)

码型说明误差
0码高电平T0H持续时间0.35μs,低电平T0L持续时间0.8μs±150ns
1码高电平T1H持续时间0.7μs,低电平T1L持续时间0.6μs±150ns
RES帧单位,低电平时间Trest在50μs以上-

    每个WS2812点亮需要24bit的控制数据。该24位二进制数据流中每8位代表一个颜色的像素值,三种颜色分别是绿色、红色和蓝色,即GRB像素流格式。通过对这三个基本色的像素值进行不同设置,得到不同的颜色。
数据传输方式(Data transmission method):
WS2812数据传输方式.jpg

WS2812数据传输方式

:其中D1 为MCU 端发送的数据,D2、D3、D4 为级联电路自动整形转发的数据。)
    WS2812的级联以及与Arduino的一般连接方式如下图所示:
WS2812的级联以及与Arduino的连接方式.jpg

2.Adafruit NeoPixel Library

Arduino library for controlling single-wire-based LED pixels and strip such as the Adafruit 60 LED/meter Digital LED strip, the Adafruit FLORA RGB Smart Pixel, the Adafruit Breadboard-friendly RGB Smart Pixel, the Adafruit NeoPixel Stick, and the Adafruit NeoPixel Shield.

库文件下载地址Adafruit_NeoPixel库
使用方法:
    下载后,将文件夹重命名为“Adafruit_NeoPixel”,并安装在Arduino Libraries文件夹中。重启Arduino IDE,打开文件->Sketchbook->Library->Adafruit_NeoPixel->strandtest sketch。

    在arduino应用开发中,对于WS2812等全彩LED灯带控制,这里我们采用Adafruit NeoPixel Library来实现(主要是因为目前我只知道这个库,其他库暂时还没有去深入了解,好尴尬 -_-```)。
    在使Adafruit NeoPixel Library用配置WS2812的时候首先需要实例化一个Adafruit_NeoPixel类,例如:

/*
参数1    WS2812的数量
参数2    Arduino引脚号(WS2812 DI口与Arduino相连的引脚号)
参数3    像素类型标志,根据需要一起添加:
             NEO_KHZ800  800 KHz 比特流 (大部分的NeoPixel产品,如w/WS2812 LEDs)
             NEO_KHZ400  400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
             NEO_GRB     GRB顺序的像素流方式(大部分NeoPixel产品)
             NEO_RGB     RGB顺序的像素流方式 (v1 FLORA pixels, not v2)
             NEO_RGBW    RGBW顺序的像素流方式 (NeoPixel RGBW products)
*/
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

实例化完成后需要通过Adafruit_NeoPixel类中的begin()方法完成类的初始化操作。例如:pixels.begin();
下面简单介绍一下Adafruit_NeoPixel类中常用的一些方法。

  • void Adafruit_NeoPixel::clear(void) –用0填充整个像素条,即关闭所有WS2812灯珠。
  • void Adafruit_NeoPixel::Color(uint8_t r, uint8_t g, uint8_t b)–设置RGB的值,从0,0,0到 255,255,255。返回的是32位压缩RGB值,然后可以将其分配给a变量,供以后使用或传递给setPixelColor()函数。
  • void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c)–使用32位“打包”RGB或RGBW值设置像素的颜色。n为像素索引,从0开始。c为32位的颜色值。
  • void Adafruit_NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count)–使用一种颜色填充新像素条的全部或部分。c为32位的颜色值。first为要填充的第一个像素的第一个索引,从0开始,如果未指定,则默认从0索引开始。count为要填充的像素数,为正值。当是0或未指定将填充到条形图的末尾。
  • void Adafruit_NeoPixel::begin(void)–配置WS1280输入引脚(即对应单片机的引脚)
  • void Adafruit_NeoPixel::show(void)–将RAM中的像素数据传输到新像素。(注:在大多数体系结构中,中断是暂时禁用的以便实现正确的新像素信号定时。这意味着Arduino millis()和micros()函数,它们需要中断时,会丢失一小段时间间隔函数被调用(大约每30微秒一RGB像素,每40微秒一RGBW像素)。)
  • uint32_t Adafruit_NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val)–将色调、饱和度和亮度转换为压缩的32位RGB颜色,可将该函数返回值传递给setPixelColor()或其他与rgb作为输入的函数。hue,色调,为一个无符号的16位值,从0到65535,表示一个完整色轮的回路;sat为饱和度,8位值,范围为0到255,默认值为255;val,亮度,8位值,0到255(最大或全亮度)。如果未指定,默认值为255。
    效果示例:
    1.colorWipe():
//用一种颜色一个接一个地填充条形像素。带材未先清除;原有像素都将被逐个覆盖。
void colorWipe(uint32_t color, int wait) {
  for(int i=0; i<strip.numPixels(); i++) { //每次循环处理一个像素
    strip.setPixelColor(i, color);         //  设置像素值 (在RAM里)
    strip.show();                          
    delay(wait);                    
  }
}

2.theaterChase():

void theaterChase(uint32_t color, int wait) {
  for(int a=0; a<10; a++) {  // 重复十次
    for(int b=0; b<3; b++) { //  b从0计数到2
      strip.clear();         //  将RAM中的像素值都设为0
      for(int c=b; c<strip.numPixels(); c += 3) {
        strip.setPixelColor(c, color);//将索引为c的像素的颜色值设为color
      }
      strip.show(); // Update strip with new contents
      delay(wait);  // Pause for a moment
    }
  }
}

3.rainbow():

// 彩虹沿整个带状循环
void rainbow(int wait) {
  for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {
    for(int i=0; i<strip.numPixels(); i++) { 
      int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
      strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
    }
    strip.show(); // 更新当前带内容
    delay(wait);  // 暂停wait毫秒
  }
}

4.theaterChaseRainbow():

void theaterChaseRainbow(int wait) {
  int firstPixelHue = 0;     // 第一个像素从红色开始(色调0)
  for(int a=0; a<30; a++) {  // 重复30次
    for(int b=0; b<3; b++) { 
      strip.clear();         //   将RAM中的所有像素设置为0(关闭)
      for(int c=b; c<strip.numPixels(); c += 3) {
        int  hue   = firstPixelHue + c * 65536L / strip.numPixels();
        uint32_t color = strip.gamma32(strip.ColorHSV(hue));
        strip.setPixelColor(c, color); 
      }
      strip.show();              
      delay(wait);               
      firstPixelHue += 65536 / 90; 
    }
  }
}

Adafruit_NeoPixel库的部分示例

// A basic everyday NeoPixel strip test program.

// NEOPIXEL BEST PRACTICES for most reliable operation:
// - Add 1000 uF CAPACITOR between NeoPixel strip's + and - connections.
// - MINIMIZE WIRING LENGTH between microcontroller board and first pixel.
// - NeoPixel strip's DATA-IN should pass through a 300-500 OHM RESISTOR.
// - AVOID connecting NeoPixels on a LIVE CIRCUIT. If you must, ALWAYS
//   connect GROUND (-) first, then +, then data.
// - When using a 3.3V microcontroller with a 5V-powered NeoPixel strip,
//   a LOGIC-LEVEL CONVERTER on the data line is STRONGLY RECOMMENDED.
// (Skipping these may work OK on your workbench but can fail in the field)

#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
 #include <avr/power.h> // Required for 16 MHz Adafruit Trinket
#endif

// Which pin on the Arduino is connected to the NeoPixels?
// On a Trinket or Gemma we suggest changing this to 1:
#define LED_PIN    6

// How many NeoPixels are attached to the Arduino?
#define LED_COUNT 60

// Declare our NeoPixel strip object:
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
// Argument 1 = Number of pixels in NeoPixel strip
// Argument 2 = Arduino pin number (most are valid)
// Argument 3 = Pixel type flags, add together as needed:
//   NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
//   NEO_KHZ400  400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
//   NEO_GRB     Pixels are wired for GRB bitstream (most NeoPixel products)
//   NEO_RGB     Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
//   NEO_RGBW    Pixels are wired for RGBW bitstream (NeoPixel RGBW products)


// setup() function -- runs once at startup --------------------------------

void setup() {
  // These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
  // Any other board, you can remove this part (but no harm leaving it):
#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
  clock_prescale_set(clock_div_1);
#endif
  // END of Trinket-specific code.

  strip.begin();           // INITIALIZE NeoPixel strip object (REQUIRED)
  strip.show();            // Turn OFF all pixels ASAP
  strip.setBrightness(50); // Set BRIGHTNESS to about 1/5 (max = 255)
}


// loop() function -- runs repeatedly as long as board is on ---------------

void loop() {
  // Fill along the length of the strip in various colors...
  colorWipe(strip.Color(255,   0,   0), 50); // Red
  colorWipe(strip.Color(  0, 255,   0), 50); // Green
  colorWipe(strip.Color(  0,   0, 255), 50); // Blue

  // Do a theater marquee effect in various colors...
  theaterChase(strip.Color(127, 127, 127), 50); // White, half brightness
  theaterChase(strip.Color(127,   0,   0), 50); // Red, half brightness
  theaterChase(strip.Color(  0,   0, 127), 50); // Blue, half brightness

  rainbow(10);             // Flowing rainbow cycle along the whole strip
  theaterChaseRainbow(50); // Rainbow-enhanced theaterChase variant
}


// Some functions of our own for creating animated effects -----------------

// Fill strip pixels one after another with a color. Strip is NOT cleared
// first; anything there will be covered pixel by pixel. Pass in color
// (as a single 'packed' 32-bit value, which you can get by calling
// strip.Color(red, green, blue) as shown in the loop() function above),
// and a delay time (in milliseconds) between pixels.
void colorWipe(uint32_t color, int wait) {
  for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...
    strip.setPixelColor(i, color);         //  Set pixel's color (in RAM)
    strip.show();                          //  Update strip to match
    delay(wait);                           //  Pause for a moment
  }
}

// Theater-marquee-style chasing lights. Pass in a color (32-bit value,
// a la strip.Color(r,g,b) as mentioned above), and a delay time (in ms)
// between frames.
void theaterChase(uint32_t color, int wait) {
  for(int a=0; a<10; a++) {  // Repeat 10 times...
    for(int b=0; b<3; b++) { //  'b' counts from 0 to 2...
      strip.clear();         //   Set all pixels in RAM to 0 (off)
      // 'c' counts up from 'b' to end of strip in steps of 3...
      for(int c=b; c<strip.numPixels(); c += 3) {
        strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
      }
      strip.show(); // Update strip with new contents
      delay(wait);  // Pause for a moment
    }
  }
}

// Rainbow cycle along whole strip. Pass delay time (in ms) between frames.
void rainbow(int wait) {
  // Hue of first pixel runs 5 complete loops through the color wheel.
  // Color wheel has a range of 65536 but it's OK if we roll over, so
  // just count from 0 to 5*65536. Adding 256 to firstPixelHue each time
  // means we'll make 5*65536/256 = 1280 passes through this outer loop:
  for(long firstPixelHue = 0; firstPixelHue < 5*65536; firstPixelHue += 256) {
    for(int i=0; i<strip.numPixels(); i++) { // For each pixel in strip...
      // Offset pixel hue by an amount to make one full revolution of the
      // color wheel (range of 65536) along the length of the strip
      // (strip.numPixels() steps):
      int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
      // strip.ColorHSV() can take 1 or 3 arguments: a hue (0 to 65535) or
      // optionally add saturation and value (brightness) (each 0 to 255).
      // Here we're using just the single-argument hue variant. The result
      // is passed through strip.gamma32() to provide 'truer' colors
      // before assigning to each pixel:
      strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
    }
    strip.show(); // Update strip with new contents
    delay(wait);  // Pause for a moment
  }
}

// Rainbow-enhanced theater marquee. Pass delay time (in ms) between frames.
void theaterChaseRainbow(int wait) {
  int firstPixelHue = 0;     // First pixel starts at red (hue 0)
  for(int a=0; a<30; a++) {  // Repeat 30 times...
    for(int b=0; b<3; b++) { //  'b' counts from 0 to 2...
      strip.clear();         //   Set all pixels in RAM to 0 (off)
      // 'c' counts up from 'b' to end of strip in increments of 3...
      for(int c=b; c<strip.numPixels(); c += 3) {
        // hue of pixel 'c' is offset by an amount to make one full
        // revolution of the color wheel (range 65536) along the length
        // of the strip (strip.numPixels() steps):
        int      hue   = firstPixelHue + c * 65536L / strip.numPixels();
        uint32_t color = strip.gamma32(strip.ColorHSV(hue)); // hue -> RGB
        strip.setPixelColor(c, color); // Set pixel 'c' to value 'color'
      }
      strip.show();                // Update strip with new contents
      delay(wait);                 // Pause for a moment
      firstPixelHue += 65536 / 90; // One cycle of color wheel over 90 frames
    }
  }
}

参考文献
WS2812模块接线教程
Adafruit_NeoPixel库

原文链接

Arduino配置WS2812及Adafruit_NeoPixel库的使用

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐