【PCL】SolidWorks 三维建模 STL, OBJ 采样生成 PCD 点云数据(附源码)
[PCL自学篇] 一.SolidWorks三维建模STL,OBJ采样生成PCD点云数据新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流
这阵子做线结构光视觉检测(钢轨磨耗检测)项目的过程中,发现之前的许多知识点在逐渐遗忘,常言好记性不如烂笔头,故决定把项目中所用到的,把笔者认为有价值且对博友能够产生帮助的内容,记录分享于此。能力有限,如有纰漏,希望博友留下意见与建议。
1 前言
磨耗检测项目中,配准阶段将结构光采集的数据集映射到标准廓形的数据集上,以识别其特征,进而计算分析。
其中,建立标准轨头廓形数据模型有两种方法,a)分段函数描述;b)三维模型转 PCD(所选方案);
选定方案之后,查阅三维模型提取点云数据的相关资料时,发现在 SolidWorks 三维模型中提取生成点云数据的资料较少,且需要下载相关软件或配置需求过高。于是在笔者仔细查阅相关资料后,总结了一种较为方便且利于没有这方面基础的小白阅读完成。
2 准备工作(相关软件及库)
- SolidWorks 等三维建模软件
- PCL 点云库
3 实现步骤
3.1 三维建模保存 stl 网格文件
3.2 stl网格文件转 obj 网格文件
a) 在工具里勾选 SW 插件 ScanTo3D,后续格式保存要用
b) 以 ScanTo3D 网格文件打开保存的 stl
c) 另存为 ScanTo3D(*.obj) 文件
3.3 利用 PCL 采样可执行程序,实现 obj 网格文件转 pcd 点云
a) 接下来就是最重要的两步了,在安装 PCL 的路径下 bin 文件夹打开,找到 pcl_mesh_sampling_debug.exe 或 pcl_mesh_sampling_release.exe
b) cmd 运行可执行采样文件(obj 文件相同目录)
4 结果
结果显示,点云文件获取完毕
当前目录下生成 60kg╱m 钢轨-05.pcd 的文件。下采样控制体素点距或投影模型等相关后续必要操作,标准点云模型满足需求。
如有不明白的地方,欢迎交流。
5 mesh_sampling 源码(应读者需求,已更新)
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/io/pcd_io.h>
#include <pcl/common/transforms.h>
#include <vtkPLYReader.h>
#include <vtkOBJReader.h>
#include <vtkTriangle.h>
#include <vtkTriangleFilter.h>
#include <vtkPolyDataMapper.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
inline double
uniform_deviate (int seed)
{
double ran = seed * (1.0 / (RAND_MAX + 1.0));
return ran;
}
inline void
randomPointTriangle (float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3,
Eigen::Vector4f& p)
{
float r1 = static_cast<float> (uniform_deviate (rand ()));
float r2 = static_cast<float> (uniform_deviate (rand ()));
float r1sqr = sqrtf (r1);
float OneMinR1Sqr = (1 - r1sqr);
float OneMinR2 = (1 - r2);
a1 *= OneMinR1Sqr;
a2 *= OneMinR1Sqr;
a3 *= OneMinR1Sqr;
b1 *= OneMinR2;
b2 *= OneMinR2;
b3 *= OneMinR2;
c1 = r1sqr * (r2 * c1 + b1) + a1;
c2 = r1sqr * (r2 * c2 + b2) + a2;
c3 = r1sqr * (r2 * c3 + b3) + a3;
p[0] = c1;
p[1] = c2;
p[2] = c3;
p[3] = 0;
}
inline void
randPSurface (vtkPolyData * polydata, std::vector<double> * cumulativeAreas, double totalArea, Eigen::Vector4f& p)
{
float r = static_cast<float> (uniform_deviate (rand ()) * totalArea);
std::vector<double>::iterator low = std::lower_bound (cumulativeAreas->begin (), cumulativeAreas->end (), r);
vtkIdType el = vtkIdType (low - cumulativeAreas->begin ());
double A[3], B[3], C[3];
vtkIdType npts = 0;
vtkIdType *ptIds = NULL;
polydata->GetCellPoints (el, npts, ptIds);
polydata->GetPoint (ptIds[0], A);
polydata->GetPoint (ptIds[1], B);
polydata->GetPoint (ptIds[2], C);
randomPointTriangle (float (A[0]), float (A[1]), float (A[2]),
float (B[0]), float (B[1]), float (B[2]),
float (C[0]), float (C[1]), float (C[2]), p);
}
void
uniform_sampling (vtkSmartPointer<vtkPolyData> polydata, size_t n_samples, pcl::PointCloud<pcl::PointXYZ> & cloud_out)
{
polydata->BuildCells ();
vtkSmartPointer<vtkCellArray> cells = polydata->GetPolys ();
double p1[3], p2[3], p3[3], totalArea = 0;
std::vector<double> cumulativeAreas (cells->GetNumberOfCells (), 0);
size_t i = 0;
vtkIdType npts = 0, *ptIds = NULL;
for (cells->InitTraversal (); cells->GetNextCell (npts, ptIds); i++)
{
polydata->GetPoint (ptIds[0], p1);
polydata->GetPoint (ptIds[1], p2);
polydata->GetPoint (ptIds[2], p3);
totalArea += vtkTriangle::TriangleArea (p1, p2, p3);
cumulativeAreas[i] = totalArea;
}
cloud_out.points.resize (n_samples);
cloud_out.width = static_cast<uint32_t> (n_samples);
cloud_out.height = 1;
for (i = 0; i < n_samples; i++)
{
Eigen::Vector4f p;
randPSurface (polydata, &cumulativeAreas, totalArea, p);
cloud_out.points[i].x = p[0];
cloud_out.points[i].y = p[1];
cloud_out.points[i].z = p[2];
}
}
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
int default_number_samples = 100000;
float default_leaf_size = 0.01f;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.{ply,obj} output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -n_samples X = number of samples (default: ");
print_value ("%d", default_number_samples);
print_info (")\n");
print_info (
" -leaf_size X = the XYZ leaf size for the VoxelGrid -- for data reduction (default: ");
print_value ("%f", default_leaf_size);
print_info (" m)\n");
}
/* ---[ */
int
main (int argc, char **argv)
{
print_info ("Convert a CAD model to a point cloud using uniform sampling. For more information, use: %s -h\n",
argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse command line arguments
int SAMPLE_POINTS_ = default_number_samples;
parse_argument (argc, argv, "-n_samples", SAMPLE_POINTS_);
float leaf_size = default_leaf_size;
parse_argument (argc, argv, "-leaf_size", leaf_size);
// Parse the command line arguments for .ply and PCD files
std::vector<int> pcd_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (pcd_file_indices.size () != 1)
{
print_error ("Need a single output PCD file to continue.\n");
return (-1);
}
std::vector<int> ply_file_indices = parse_file_extension_argument (argc, argv, ".ply");
std::vector<int> obj_file_indices = parse_file_extension_argument (argc, argv, ".obj");
if (ply_file_indices.size () != 1 && obj_file_indices.size () != 1)
{
print_error ("Need a single input PLY/OBJ file to continue.\n");
return (-1);
}
vtkSmartPointer<vtkPolyData> polydata1;
if (ply_file_indices.size () == 1)
{
vtkSmartPointer<vtkPLYReader> readerQuery = vtkSmartPointer<vtkPLYReader>::New ();
readerQuery->SetFileName (argv[ply_file_indices[0]]);
}
else if (obj_file_indices.size () == 1)
{
vtkSmartPointer<vtkOBJReader> readerQuery = vtkSmartPointer<vtkOBJReader>::New ();
readerQuery->SetFileName (argv[obj_file_indices[0]]);
polydata1 = readerQuery->GetOutput ();
polydata1->Update ();
}
//make sure that the polygons are triangles!
vtkSmartPointer<vtkTriangleFilter> triangleFilter = vtkSmartPointer<vtkTriangleFilter>::New ();
triangleFilter->SetInput (polydata1);
triangleFilter->Update ();
vtkSmartPointer<vtkPolyDataMapper> triangleMapper = vtkSmartPointer<vtkPolyDataMapper>::New ();
triangleMapper->SetInputConnection (triangleFilter->GetOutputPort ());
triangleMapper->Update();
polydata1 = triangleMapper->GetInput();
polydata1->Update ();
bool INTER_VIS = false;
bool VIS = true;
if (INTER_VIS)
{
visualization::PCLVisualizer vis;
vis.addModelFromPolyData (polydata1, "mesh1", 0);
vis.setRepresentationToSurfaceForAllActors ();
vis.spin();
}
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_1 (new pcl::PointCloud<pcl::PointXYZ>);
uniform_sampling (polydata1, SAMPLE_POINTS_, *cloud_1);
if (INTER_VIS)
{
visualization::PCLVisualizer vis_sampled;
vis_sampled.addPointCloud (cloud_1);
vis_sampled.spin ();
}
// Voxelgrid
VoxelGrid<PointXYZ> grid_;
grid_.setInputCloud (cloud_1);
grid_.setLeafSize (leaf_size, leaf_size, leaf_size);
grid_.filter (*cloud_1);
if (VIS)
{
visualization::PCLVisualizer vis3 ("VOXELIZED SAMPLES CLOUD");
vis3.addPointCloud (cloud_1);
vis3.spin ();
}
savePCDFileASCII (argv[pcd_file_indices[0]], *cloud_1);
}
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)