本实验源于中南大学《科学计算与MATLAB语言》,包括三个内容,内容如下:

  • 符号对象的建立
  • 符号对象的运算
  • 符号矩阵

符号对象的建立

  • sym函数
    sym函数用于建立单个符号对象,其常用调用格式为:
符号对象名=sym(A)

将由A来建立符号对象,其中,A可以是一个数值常量、数值矩阵或数值表达式(不加单引号),此时符号对象为一个符号常量;A也可以是一个变量名(加单引号),这时符号对象为一个符号变量.
下面给出两个例子
1、将符号常量2赋给t,参与四则运算
2、 将常量pi/3转化为符号对象求正弦值
3、将pi/3做数值计算,得到真实的sin正弦值
代码如下:

>> t=sym(2);
>> t+1/2
 
ans =
 
5/2
 
 
>> sin(sym(pi/3))
 
ans =
 
1/2*3^(1/2)
 
 
>> sin(pi/3)

ans =

    0.8660

>> 

总结:第一个求的是数值,第二个计算符号常量是一个表达时,第三个计算常量是一个数值
下面来两个符号变量的例子

>> a=5;
>> b=-8;
>> x=sym('a');
>> y=sym('b');
>> w=(a+b)*(a-b)

w =

   -39

>> s=(x+y)*(x-y)
 
s =
 
(a+b)*(a-b)
 
 
>> 

大家有没有体会到,反正博主已经体会到了,这个变量能计算,符号常量貌似只能出个表达式,也就是符号计算的结果是一个精确的数学表达式,数值计算只能是数值。

>> eval(s)

ans =

   -39

>> 

没有我matlab函数干不了的,再来一个eval函数!

  • syms命令
    syms命令可以一次定义多个符号变量,其一般调用格式如下:
syms 符号变量1 符号变量2 ... 符号变量名n

其中,变量名不能加单引号,相互之间用空格隔开。

符号对象的运算

四则运算

符号表达式的四则运算与数值运算一样,用+、-、*、/、^运算符实现,其运算结果依然是一个符号表达式.

>> syms x;
>> f=2*x^2+3*x-5;
>> g=x^2-x+7;
>> f+g
 
ans =
 
3*x^2+2*x+2
 
 
>> 

这段代码就是利用符号对象创建表达式然后进行两个多项的加法,是不是非常神奇?

关系运算

  • 6种关系运算符:<、<=、>、>=、==、~=
  • 对应的6个函数:lt()、le()、gt()、ge()、eq()、ne()
    若参与运算的是符号表达式,其结果是一个符号表达式:若参与运算的是符号矩阵,其结果是由符号关系表达式组成的矩阵.
    在进行符号对象的运算前,可用assume函数符号对象设置值域,函数调用格式为:
assume(condition)
assume(expr,set)

第一种格式指定变量满足条件condition,第二种格式指定表达式expr属于集合set。

syms x;
assume(x<0);
abs(x)==x

assume(x,'positive');
abs(x)==x

逻辑运算

  • 3种逻辑运算符:)(与)、|(或)和~(非)。
  • 4个逻辑运算函数:and()、or()、not()、xor().
syms x
and(x<0,x>10);

因式分解与展开运算

MATLAB提供了符号表达式进行因式分解、展开、合并的函数,函数的调用格式为:

factor(s):对符号表达式s分解因式
expand(s):对符号表达式s进行展开
collect(s):对符号表达式s合并同类项
collect(s,v):对符号表达式s按变量v合并同类项
>> syms a b;
>> s=a^3-b^3;
>> factor(s)
 
ans =
 
-(b-a)*(b^2+b*a+a^2)
 
 
>> 
>> factor(12)

ans =

     2     2     3

>> 

我用c实现的,结果matlab都已经实现好了,太强了!

梅森素数的验证问题

在这里插入图片描述
数学的理论领域里要研究大素数,而大素数都是梅森素数,梅森素数的寻找也就变得为大素数提供了方向!

>> syms p;
>> m=2^p-1;
>> p=19;
>> m19=eval(m)

m19 =

      524287

>> factor(m19)

ans =

      524287

>> 
>> p=23;
>> m23=eval(m)

m23 =

     8388607

>> factor(m23)

ans =

          47      178481

>> p=29;
>> m29=eval(m)

m29 =

   536870911

>> factor(m29)

ans =

         233        1103        2089

>> p=31;
>> m31=eval(m)

m31 =

  2.1475e+009

>> factor(m31)

ans =

  2.1475e+009

>> 

总结:M19/M31不能被分解,所以是素数
M23/M29能被分解,所以不是素数

其他运算

提取有理分式的分子分母:[n,d]=nuden(s)
提取符号表达式的系数:c=coeffs(s,x)
符号表达式化简:simplify(s)
符号多项式与多项式系数向量之间的转换:
符号多项式转换为多项式系数向量:p=sym2poly(s)
多项式系数向量转换为符号多项式:s=poly2sym(p)

在这里插入图片描述
步骤:

  1. 建立方程
  2. 取出系数
  3. 反转系数
  4. 求根roots,打完收工!
>> syms a b c x;
>> f=a*x^2+b*x+c


>> g=coeffs(f,x)


>> g=g(end:-1:1)


>> roots(g)

符号运算种变量的确定

  1. 如果没有明确指定自变量,MATLAB将按以下原则确定主变量并对其相应运算:
    ①寻找除i,j之外,在字母顺序上最接近x的小写字母
    ②若表达式中有两个符号变量与x的距离相等,则ASCII码大者优先。

  2. symvar()函数可以用于查找一个符号表达式中符号变量,函数的调用格式为:

symvart(s,n)

函数返回符号表达式s中n个符号变量。因此,可以用symvar(s1j)查找表达式s的主变量

符号矩阵

符号矩阵也是一种符号表达式,所以符号表达式运算都可以在矩阵意义下进行。
注意:这些函数作用于符号矩阵时,是分别作用于矩阵的每一个元素。
在这里插入图片描述

>> syms a b x y alp;
>> m=[a^3-b^3,sin(alp)^2+cos(alp)^2;(15*x*y-3*x^2)/(x-5*y),78]
 
m =
 
[                a^3-b^3,  sin(alp)^2+cos(alp)^2]
[ (15*x*y-3*x^2)/(x-5*y),                     78]
 
 
>> simplify(m)
 
ans =
 
[ a^3-b^3,       1]
[    -3*x,      78]
 
 
>> 

在这里插入图片描述
对于齐次线性方程组Ax=0,当rank(A)<n或|A|=0时,齐次线性方程组有非零解。

>> syms lamda;
>> A=[1-lamda,-2,4;2,3-lamda,1;1,1,1-lamda];
>> D=det(A);
>> factor(D)
 
ans =
 
-lamda*(lamda-2)*(-3+lamda)
 
 
>> 

根据线性代数的知识,可以看出,当其为0,2,3即有非零解。
在这里插入图片描述

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐