求最大李雅普诺夫指数(Largest Lyapunov Exponents,LLE)的 Rosenstein 算法
文章目录原始论文原始论文M.T. Rosenstein, J.J. Collins, and C.J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65:117-134, 1993.下载地址:https://www.physionet.
文章目录
原始论文
M.T. Rosenstein, J.J. Collins, and C.J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65:117-134, 1993.
下载地址:https://www.physionet.org/content/lyapunov/1.0.0/
python 相关代码
混沌系统的常见指标
区分确定性混沌系统与噪声已成为许多不同领域的重要问题。
对于实验产生的时间序列,可以计算这些混沌系统的指标:
- 相关维数( D 2 D_2 D2),
- Kolmogorov 熵
- Lyapunov 特征指数。
相关维度是对系统复杂程度的估计,熵和特征指数是对混沌程度的估计。
最大李亚普诺夫指数的含义
LLE 描述了相空间中相近的两点(初始间距为
C
C
C)随时间推移指数分离的速率:
d
(
t
)
=
C
e
λ
1
t
d(t) = Ce^{\lambda_1 t}
d(t)=Ceλ1t其中
d
(
t
)
d(t)
d(t)表示分离距离,
C
C
C表示初始间距,
λ
1
\lambda_1
λ1 为最大李氏指数。
算法流程图
python 代码模块
最近邻
import numpy as np
from scipy import stats
from scipy.spatial import cKDTree as KDTree
from scipy.spatial import distance
def neighbors(y, metric='chebyshev', window=0, maxnum=None):
"""Find nearest neighbors of all points in the given array.
Finds the nearest neighbors of all points in the given array using
SciPy's KDTree search.
Parameters
----------
y : ndarray
N-dimensional array containing time-delayed vectors.
metric : string, optional (default = 'chebyshev')
Metric to use for distance computation. Must be one of
"cityblock" (aka the Manhattan metric), "chebyshev" (aka the
maximum norm metric), or "euclidean".
window : int, optional (default = 0)
Minimum temporal separation (Theiler window) that should exist
between near neighbors. This is crucial while computing
Lyapunov exponents and the correlation dimension.
maxnum : int, optional (default = None (optimum))
Maximum number of near neighbors that should be found for each
point. In rare cases, when there are no neighbors that are at a
nonzero distance, this will have to be increased (i.e., beyond
2 * window + 3).
Returns
-------
index : array
Array containing indices of near neighbors.
dist : array
Array containing near neighbor distances.
"""
if metric == 'cityblock':
p = 1
elif metric == 'euclidean':
p = 2
elif metric == 'chebyshev':
p = np.inf
else:
raise ValueError('Unknown metric. Should be one of "cityblock", '
'"euclidean", or "chebyshev".')
tree = KDTree(y)
n = len(y)
if not maxnum:
maxnum = (window + 1) + 1 + (window + 1)
else:
maxnum = max(1, maxnum)
if maxnum >= n:
raise ValueError('maxnum is bigger than array length.')
dists = np.empty(n)
indices = np.empty(n, dtype=int)
for i, x in enumerate(y):
for k in range(2, maxnum + 2):
dist, index = tree.query(x, k=k, p=p)
valid = (np.abs(index - i) > window) & (dist > 0)
if np.count_nonzero(valid):
dists[i] = dist[valid][0]
indices[i] = index[valid][0]
break
if k == (maxnum + 1):
raise Exception('Could not find any near neighbor with a '
'nonzero distance. Try increasing the '
'value of maxnum.')
return np.squeeze(indices), np.squeeze(dists)
maximum Lyapunov exponent
def mle(y, maxt=500, window=10, metric='euclidean', maxnum=None):
"""Estimate the maximum Lyapunov exponent.
Estimates the maximum Lyapunov exponent (MLE) from a
multi-dimensional series using the algorithm described by
Rosenstein et al. (1993).
Parameters
----------
y : ndarray
Multi-dimensional real input array containing points in the
phase space.
maxt : int, optional (default = 500)
Maximum time (iterations) up to which the average divergence
should be computed.
window : int, optional (default = 10)
Minimum temporal separation (Theiler window) that should exist
between near neighbors (see Notes).
maxnum : int, optional (default = None (optimum))
Maximum number of near neighbors that should be found for each
point. In rare cases, when there are no neighbors that are at a
nonzero distance, this will have to be increased (i.e., beyond
2 * window + 3).
Returns
-------
d : array
Average divergence for each time up to maxt.
Notes
-----
This function does not directly estimate the MLE. The MLE should be
estimated by linearly fitting the average divergence (i.e., the
average of the logarithms of near-neighbor distances) with time.
It is also important to choose an appropriate Theiler window so that
the near neighbors do not lie on the same trajectory, in which case
the estimated MLE will always be close to zero.
"""
index, dist = utils.neighbors(y, metric=metric, window=window,
maxnum=maxnum)
m = len(y)
maxt = min(m - window - 1, maxt)
d = np.empty(maxt)
d[0] = np.mean(np.log(dist))
for t in range(1, maxt):
t1 = np.arange(t, m)
t2 = index[:-t] + t
# Sometimes the nearest point would be farther than (m - maxt)
# in time. Such trajectories needs to be omitted.
valid = t2 < m
t1, t2 = t1[valid], t2[valid]
d[t] = np.mean(np.log(utils.dist(y[t1], y[t2], metric=metric)))
return d
RANSAC 拟合曲线
需要先安装 sklearn 库
def poly_fit(x, y, degree, fit="RANSAC"):
# check if we can use RANSAC
if fit == "RANSAC":
try:
# ignore ImportWarnings in sklearn
with warnings.catch_warnings():
warnings.simplefilter("ignore", ImportWarning)
import sklearn.linear_model as sklin
import sklearn.preprocessing as skpre
except ImportError:
warnings.warn(
"fitting mode 'RANSAC' requires the package sklearn, using"
+ " 'poly' instead",
RuntimeWarning)
fit = "poly"
if fit == "poly":
return np.polyfit(x, y, degree)
elif fit == "RANSAC":
model = sklin.RANSACRegressor(sklin.LinearRegression(fit_intercept=False))
xdat = np.asarray(x)
if len(xdat.shape) == 1:
# interpret 1d-array as list of len(x) samples instead of
# one sample of length len(x)
xdat = xdat.reshape(-1, 1)
polydat = skpre.PolynomialFeatures(degree).fit_transform(xdat)
try:
model.fit(polydat, y)
coef = model.estimator_.coef_[::-1]
except ValueError:
warnings.warn(
"RANSAC did not reach consensus, "
+ "using numpy's polyfit",
RuntimeWarning)
coef = np.polyfit(x, y, degree)
return coef
else:
raise ValueError("invalid fitting mode ({})".format(fit))
例子:计算洛伦兹系统的最大李雅普诺夫指数
import warnings
from nolitsa import data, lyapunov
import numpy as np
import matplotlib.pyplot as plt
dt = 0.01
x0 = [0.62225717, -0.08232857, 30.60845379]
x = data.lorenz(length=4000, sample=dt, x0=x0,
sigma=16.0, beta=4.0, rho=45.92)[1]
plt.plot(range(len(x)),x)
plt.show()
# Choose appropriate Theiler window.
meanperiod = 30
maxt = 250
d = lyapunov.mle(x, maxt=maxt, window=meanperiod)
t = np.arange(maxt) *dt
coefs = poly_fit(t, d, 1)
print('LLE = ', coefs[0])
plt.title('Maximum Lyapunov exponent for the Lorenz system')
plt.xlabel(r'Time $t$')
plt.ylabel(r'Average divergence $\langle d_i(t) \rangle$')
plt.plot(t, d, label='divergence')
plt.plot(t, t * 1.50, '--', label='slope=1.5')
plt.plot(t, coefs[1] +coefs[0]* t, '--', label='RANSAC')
plt.legend()
plt.show()
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)