pytorch利用卷积神经网络进行CIFAR-10图像分类
卷积神经网络在这教程中,主要学习训练CNN,来对CIFAR-10数据集进行图像分类。该数据集中的图像是彩色小图像,其中被分为了十类。 一些示例图像,如下图所示:测试GPU是否可以使用数据集中的图像大小为32x32x3 。在训练的过程中最好使用GPU来加速。import torchimport numpy as np# 检查是否可以利用GPUtrain_on_gpu = torch.cuda.is_
卷积神经网络
在这教程中,主要学习训练CNN,来对CIFAR-10数据集进行图像分类。
该数据集中的图像是彩色小图像,其中被分为了十类。 一些示例图像,如下图所示:
测试GPU是否可以使用
数据集中的图像大小为32x32x3
。在训练的过程中最好使用GPU来加速。
import torch
import numpy as np
# 检查是否可以利用GPU
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
print('CUDA is not available.')
else:
print('CUDA is available!')
结果:
CUDA is available!
加载数据
数据下载可能会比较慢。请耐心等待。 加载训练和测试数据,将训练数据分为训练集和验证集,然后为每个数据集创建DataLoader
。
from torchvision import datasets
import torchvision.transforms as transforms
from torch.utils.data.sampler import SubsetRandomSampler
# number of subprocesses to use for data loading
num_workers = 0
# 每批加载16张图片
batch_size = 16
# percentage of training set to use as validation
valid_size = 0.2
# 将数据转换为torch.FloatTensor,并标准化。
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 选择训练集与测试集的数据
train_data = datasets.CIFAR10('data', train=True,
download=True, transform=transform)
test_data = datasets.CIFAR10('data', train=False,
download=True, transform=transform)
# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]
# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
sampler=valid_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,
num_workers=num_workers)
# 图像分类中10类别
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
查看训练集中的一批样本
import matplotlib.pyplot as plt
%matplotlib inline
# helper function to un-normalize and display an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
plt.imshow(np.transpose(img, (1, 2, 0))) # convert from Tensor image
# 获取一批样本
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy() # convert images to numpy for display
# 显示图像,标题为类名
fig = plt.figure(figsize=(25, 4))
# 显示16张图片
for idx in np.arange(16):
ax = fig.add_subplot(2, 16/2, idx+1, xticks=[], yticks=[])
imshow(images[idx])
ax.set_title(classes[labels[idx]])
结果:
查看一张图像中的更多细节
在这里,进行了归一化处理。红色、绿色和蓝色(RGB)颜色通道可以被看作三个单独的灰度图像。
rgb_img = np.squeeze(images[3])
channels = ['red channel', 'green channel', 'blue channel']
fig = plt.figure(figsize = (36, 36))
for idx in np.arange(rgb_img.shape[0]):
ax = fig.add_subplot(1, 3, idx + 1)
img = rgb_img[idx]
ax.imshow(img, cmap='gray')
ax.set_title(channels[idx])
width, height = img.shape
thresh = img.max()/2.5
for x in range(width):
for y in range(height):
val = round(img[x][y],2) if img[x][y] !=0 else 0
ax.annotate(str(val), xy=(y,x),
horizontalalignment='center',
verticalalignment='center', size=8,
color='white' if img[x][y]<thresh else 'black')
结果:
定义卷积神经网络的结构
这里,将定义一个CNN的结构。 将包括以下内容:
-
卷积层:可以认为是利用图像的多个滤波器(经常被称为卷积操作)进行滤波,得到图像的特征。
-
通常,我们在 PyTorch 中使用
nn.Conv2d
定义卷积层,并指定以下参数:nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0)
in_channels
是指输入深度。对于灰阶图像来说,深度 = 1out_channels
是指输出深度,或你希望获得的过滤图像数量kernel_size
是卷积核的大小(通常为 3,表示 3x3 核)stride
和padding
具有默认值,但是应该根据你希望输出在空间维度 x, y 里具有的大小设置它们的值。
用 3x3 窗口和步长 1 进行卷积运算 -
-
池化层:这里采用的最大池化:对指定大小的窗口里的像素值最大值。
- 在 2x2 窗口里,取这四个值的最大值。
- 由于最大池化更适合发现图像边缘等重要特征,适合图像分类任务。
- 最大池化层通常位于卷积层之后,用于缩小输入的 x-y 维度 。
-
通常的“线性+dropout”层可避免过拟合,并产生输出10类别。
下图中,可以看到这是一个具有2个卷积层的神经网络。
卷积层的输出大小
要计算给定卷积层的输出大小,我们可以执行以下计算:
这里,假设输入大小为(H,W),滤波器大小为(FH,FW),输出大小为 (OH,OW),填充为P,步幅为S。此时,输出大小可通过下面公式进行计算。
例: 输入大小为(H=7,W=7)
,滤波器大小为(FH=3,FW=3)
,填充为P=0
,步幅为S=1
, 输出大小为 (OH=5,OW=5)
。如果用 S=2
,将得输出大小为 (OH=3,OW=3)
。
import torch.nn as nn
import torch.nn.functional as F
# 定义卷积神经网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 卷积层 (32x32x3的图像)
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
# 卷积层(16x16x16)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
# 卷积层(8x8x32)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
# 最大池化层
self.pool = nn.MaxPool2d(2, 2)
# linear layer (64 * 4 * 4 -> 500)
self.fc1 = nn.Linear(64 * 4 * 4, 500)
# linear layer (500 -> 10)
self.fc2 = nn.Linear(500, 10)
# dropout层 (p=0.3)
self.dropout = nn.Dropout(0.3)
def forward(self, x):
# add sequence of convolutional and max pooling layers
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
# flatten image input
x = x.view(-1, 64 * 4 * 4)
# add dropout layer
x = self.dropout(x)
# add 1st hidden layer, with relu activation function
x = F.relu(self.fc1(x))
# add dropout layer
x = self.dropout(x)
# add 2nd hidden layer, with relu activation function
x = self.fc2(x)
return x
# create a complete CNN
model = Net()
print(model)
# 使用GPU
if train_on_gpu:
model.cuda()
结果:
Net(
(conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(fc1): Linear(in_features=1024, out_features=500, bias=True)
(fc2): Linear(in_features=500, out_features=10, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
)
选择损失函数与优化函数
import torch.optim as optim
# 使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 使用随机梯度下降,学习率lr=0.01
optimizer = optim.SGD(model.parameters(), lr=0.01)
训练卷积神经网络模型
注意:训练集和验证集的损失是如何随着时间的推移而减少的;如果验证损失不断增加,则表明可能过拟合现象。(实际上,在下面的例子中,如果n_epochs设置为40,可以发现存在过拟合现象!)
# 训练模型的次数
n_epochs = 30
valid_loss_min = np.Inf # track change in validation loss
for epoch in range(1, n_epochs+1):
# keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0
###################
# 训练集的模型 #
###################
model.train()
for data, target in train_loader:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item()*data.size(0)
######################
# 验证集的模型#
######################
model.eval()
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update average validation loss
valid_loss += loss.item()*data.size(0)
# 计算平均损失
train_loss = train_loss/len(train_loader.sampler)
valid_loss = valid_loss/len(valid_loader.sampler)
# 显示训练集与验证集的损失函数
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss))
# 如果验证集损失函数减少,就保存模型。
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min,valid_loss))
torch.save(model.state_dict(), 'model_cifar.pt')
valid_loss_min = valid_loss
结果:
Epoch: 1 Training Loss: 2.065666 Validation Loss: 1.706993
Validation loss decreased (inf --> 1.706993). Saving model ...
Epoch: 2 Training Loss: 1.609919 Validation Loss: 1.451288
Validation loss decreased (1.706993 --> 1.451288). Saving model ...
Epoch: 3 Training Loss: 1.426175 Validation Loss: 1.294594
Validation loss decreased (1.451288 --> 1.294594). Saving model ...
Epoch: 4 Training Loss: 1.307891 Validation Loss: 1.182497
Validation loss decreased (1.294594 --> 1.182497). Saving model ...
Epoch: 5 Training Loss: 1.200655 Validation Loss: 1.118825
Validation loss decreased (1.182497 --> 1.118825). Saving model ...
Epoch: 6 Training Loss: 1.115498 Validation Loss: 1.041203
Validation loss decreased (1.118825 --> 1.041203). Saving model ...
Epoch: 7 Training Loss: 1.047874 Validation Loss: 1.020686
Validation loss decreased (1.041203 --> 1.020686). Saving model ...
Epoch: 8 Training Loss: 0.991542 Validation Loss: 0.936289
Validation loss decreased (1.020686 --> 0.936289). Saving model ...
Epoch: 9 Training Loss: 0.942437 Validation Loss: 0.892730
Validation loss decreased (0.936289 --> 0.892730). Saving model ...
Epoch: 10 Training Loss: 0.894279 Validation Loss: 0.875833
Validation loss decreased (0.892730 --> 0.875833). Saving model ...
Epoch: 11 Training Loss: 0.859178 Validation Loss: 0.838847
Validation loss decreased (0.875833 --> 0.838847). Saving model ...
Epoch: 12 Training Loss: 0.822664 Validation Loss: 0.823634
Validation loss decreased (0.838847 --> 0.823634). Saving model ...
Epoch: 13 Training Loss: 0.787049 Validation Loss: 0.802566
Validation loss decreased (0.823634 --> 0.802566). Saving model ...
Epoch: 14 Training Loss: 0.749585 Validation Loss: 0.785852
Validation loss decreased (0.802566 --> 0.785852). Saving model ...
Epoch: 15 Training Loss: 0.721540 Validation Loss: 0.772729
Validation loss decreased (0.785852 --> 0.772729). Saving model ...
Epoch: 16 Training Loss: 0.689508 Validation Loss: 0.768470
Validation loss decreased (0.772729 --> 0.768470). Saving model ...
Epoch: 17 Training Loss: 0.662432 Validation Loss: 0.758518
Validation loss decreased (0.768470 --> 0.758518). Saving model ...
Epoch: 18 Training Loss: 0.632324 Validation Loss: 0.750859
Validation loss decreased (0.758518 --> 0.750859). Saving model ...
Epoch: 19 Training Loss: 0.616094 Validation Loss: 0.729692
Validation loss decreased (0.750859 --> 0.729692). Saving model ...
Epoch: 20 Training Loss: 0.588593 Validation Loss: 0.729085
Validation loss decreased (0.729692 --> 0.729085). Saving model ...
Epoch: 21 Training Loss: 0.571516 Validation Loss: 0.734009
Epoch: 22 Training Loss: 0.545541 Validation Loss: 0.721433
Validation loss decreased (0.729085 --> 0.721433). Saving model ...
Epoch: 23 Training Loss: 0.523696 Validation Loss: 0.720512
Validation loss decreased (0.721433 --> 0.720512). Saving model ...
Epoch: 24 Training Loss: 0.508577 Validation Loss: 0.728457
Epoch: 25 Training Loss: 0.483033 Validation Loss: 0.722556
Epoch: 26 Training Loss: 0.469563 Validation Loss: 0.742352
Epoch: 27 Training Loss: 0.449316 Validation Loss: 0.726019
Epoch: 28 Training Loss: 0.442354 Validation Loss: 0.713364
Validation loss decreased (0.720512 --> 0.713364). Saving model ...
Epoch: 29 Training Loss: 0.421807 Validation Loss: 0.718615
Epoch: 30 Training Loss: 0.404595 Validation Loss: 0.729914
加载模型
model.load_state_dict(torch.load('model_cifar.pt'))
结果:
<All keys matched successfully>
测试训练好的网络
在测试数据上测试你的训练模型!一个“好”的结果将是CNN得到大约70%,这些测试图像的准确性。
# track test loss
test_loss = 0.0
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
model.eval()
# iterate over test data
for data, target in test_loader:
# move tensors to GPU if CUDA is available
if train_on_gpu:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update test loss
test_loss += loss.item()*data.size(0)
# convert output probabilities to predicted class
_, pred = torch.max(output, 1)
# compare predictions to true label
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
# calculate test accuracy for each object class
for i in range(batch_size):
label = target.data[i]
class_correct[label] += correct[i].item()
class_total[label] += 1
# average test loss
test_loss = test_loss/len(test_loader.dataset)
print('Test Loss: {:.6f}\n'.format(test_loss))
for i in range(10):
if class_total[i] > 0:
print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % (
classes[i], 100 * class_correct[i] / class_total[i],
np.sum(class_correct[i]), np.sum(class_total[i])))
else:
print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i]))
print('\nTest Accuracy (Overall): %2d%% (%2d/%2d)' % (
100. * np.sum(class_correct) / np.sum(class_total),
np.sum(class_correct), np.sum(class_total)))
结果:
Test Loss: 0.708721
Test Accuracy of airplane: 82% (826/1000)
Test Accuracy of automobile: 81% (818/1000)
Test Accuracy of bird: 65% (659/1000)
Test Accuracy of cat: 59% (590/1000)
Test Accuracy of deer: 75% (757/1000)
Test Accuracy of dog: 56% (565/1000)
Test Accuracy of frog: 81% (812/1000)
Test Accuracy of horse: 82% (823/1000)
Test Accuracy of ship: 86% (866/1000)
Test Accuracy of truck: 84% (848/1000)
Test Accuracy (Overall): 75% (7564/10000)
显示测试样本的结果
# obtain one batch of test images
dataiter = iter(test_loader)
images, labels = dataiter.next()
images.numpy()
# move model inputs to cuda, if GPU available
if train_on_gpu:
images = images.cuda()
# get sample outputs
output = model(images)
# convert output probabilities to predicted class
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
# plot the images in the batch, along with predicted and true labels
fig = plt.figure(figsize=(25, 4))
for idx in np.arange(16):
ax = fig.add_subplot(2, 16/2, idx+1, xticks=[], yticks=[])
imshow(images.cpu()[idx])
ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]),
color=("green" if preds[idx]==labels[idx].item() else "red"))
结果:
参考资料:
《吴恩达深度学习笔记》
《深度学习入门:基于Python的理论与实现》
https://pytorch.org/docs/stable/nn.html#
https://github.com/udacity/deep-learning-v2-pytorch
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)