微调BERT进行中文文本分类任务(Pytorch代码实现)
BERT(Bidirectional Encoder Representation from Transformers)是2018年10月由Google AI研究院提出的一种预训练模型。其模型结构由多层Transformer的Encoder堆叠而成,在大规模语料中进行预训练后,迁移到下游任务,仅进行参数微调训练,就能显著提升性能。本文聚焦于微调中文BERT进行新闻标题分类任务的代码实现。
微调BERT进行中文文本分类任务(Pytorch代码)
BERT(Bidirectional Encoder Representation from Transformers)是2018年10月由Google AI研究院提出的一种预训练模型。其模型结构由多层Transformer的Encoder堆叠而成,在大规模语料中进行预训练后,迁移到下游任务,仅进行参数微调训练,就能显著提升性能。本文聚焦于微调中文BERT进行新闻标题分类任务的代码实现,更多BERT原理参考图解BERT。
读取数据
数据集采样自清华新闻标题分类数据集,10分类且各类别样本均衡,训练集18万,开发集2万,测试集2万。
import pandas as pd
# 本地数据地址
train_data_path = 'data/THUCNewsPart/train.txt'
dev_data_path = 'data/THUCNewsPart/dev.txt'
test_data_path = 'data/THUCNewsPart/test.txt'
label_path = 'data/THUCNewsPart/class.txt'
# 读取数据
train_df = pd.read_csv(train_data_path, sep='\t', header=None)
dev_df = pd.read_csv(dev_data_path, sep='\t', header=None)
test_df = pd.read_csv(test_data_path, sep='\t', header=None)
# 更改列名
new_columns = ['text', 'label']
train_df = train_df.rename(columns=dict(zip(train_df.columns, new_columns)))
dev_df = dev_df.rename(columns=dict(zip(dev_df.columns, new_columns)))
test_df = test_df.rename(columns=dict(zip(test_df.columns, new_columns)))
# 读取标签
real_labels = []
with open('data/THUCNewsPart/class.txt', 'r') as f:
for row in f.readlines():
real_labels.append(row.strip())
分析数据
新闻标题的长度在 5~35之间。
import matplotlib.pyplot as plt
# 设置全局字体为SimHei,这是一种支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决保存图像时负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
# 计算字符串长度并统计分布
length_counts = train_df['text'].apply(len).value_counts().sort_index()
# 绘制直方图
plt.hist(length_counts.index, bins=len(length_counts), weights=length_counts.values)
plt.xlabel('文本长度')
plt.ylabel('频数')
plt.title('字符串长度分布直方图')
plt.show()
下载预训练模型
前往HuggingFace点击下载预训练模型,并放置到特定文件夹,以便复用。
# 点击下载的方式比较繁杂,奈何国内无法访问,此处记下更优雅的模型下载方式。
# from huggingface_hub import snapshot_download
# snapshot_download(repo_id="bert-base-chinese",
# ignore_patterns=["*.msgpack", "*.h5", "*.safetensors"],
# local_dir="/home/yzw/plm", local_dir_use_symlinks=False)
构建DataSet
调用BERT的分词器,进行分词,其返回结果是包括input_ids,token_type_ids和attention_mask的字典。
# 下载的预训练文件路径
BERT_PATH = '/home/yzw/plm/bert-base-chinese'
from transformers import BertTokenizer
# 加载分词器
tokenizer = BertTokenizer.from_pretrained(BERT_PATH)
example_text = '我爱北京天安门。'
bert_input = tokenizer(example_text,padding='max_length',
max_length = 10,
truncation=True,
return_tensors="pt") # pt表示返回tensor
print(bert_input)
# {'input_ids': tensor([[ 101, 2769, 4263, 1266, 776, 1921, 2128, 7305, 511, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
继承Dataset,并实现__init__
、__getitem__
以及__len__
方法,以便进行迭代训练。
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, df):
# tokenizer分词后可以被自动汇聚
self.texts = [tokenizer(text,
padding='max_length', # 填充到最大长度
max_length = 35, # 经过数据分析,最大长度为35
truncation=True,
return_tensors="pt")
for text in df['text']]
# Dataset会自动返回Tensor
self.labels = [label for label in df['label']]
def __getitem__(self, idx):
return self.texts[idx], self.labels[idx]
def __len__(self):
return len(self.labels)
# 因为要进行分词,此段运行较久,约40s
train_dataset = MyDataset(train_df)
dev_dataset = MyDataset(dev_df)
test_dataset = MyDataset(test_df)
构建模型
模型结构比较简单,取BERT的[CLS]输出(pooled_output),经过dropout层随机丢弃一些神经元,再接入线性分类层,最后采用ReLU进行激活,得到分类结果。后面将讨论RuLU的有效性。
from torch import nn
from transformers import BertModel
class BertClassifier(nn.Module):
def __init__(self):
super(BertClassifier, self).__init__()
self.bert = BertModel.from_pretrained(BERT_PATH)
self.dropout = nn.Dropout(0.5)
self.linear = nn.Linear(768, 10)
self.relu = nn.ReLU()
def forward(self, input_id, mask):
_, pooled_output = self.bert(input_ids=input_id, attention_mask=mask, return_dict=False)
dropout_output = self.dropout(pooled_output)
linear_output = self.linear(dropout_output)
final_layer = self.relu(linear_output)
return final_layer
训练模型
import torch
from torch.optim import Adam
from tqdm import tqdm
import numpy as np
import random
import os
# 训练超参数
epoch = 5
batch_size = 64
lr = 1e-5
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
random_seed = 1999
save_path = './bert_checkpoint'
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(random_seed)
def save_model(save_name):
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(model.state_dict(), os.path.join(save_path, save_name))
# 定义模型
model = BertClassifier()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=lr)
model = model.to(device)
criterion = criterion.to(device)
# 构建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size)
# 训练
best_dev_acc = 0
for epoch_num in range(epoch):
total_acc_train = 0
total_loss_train = 0
for inputs, labels in tqdm(train_loader):
input_ids = inputs['input_ids'].squeeze(1).to(device) # torch.Size([32, 35])
masks = inputs['attention_mask'].to(device) # torch.Size([32, 1, 35])
labels = labels.to(device)
output = model(input_ids, masks)
batch_loss = criterion(output, labels)
batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
acc = (output.argmax(dim=1) == labels).sum().item()
total_acc_train += acc
total_loss_train += batch_loss.item()
# ----------- 验证模型 -----------
model.eval()
total_acc_val = 0
total_loss_val = 0
# 不需要计算梯度
with torch.no_grad():
# 循环获取数据集,并用训练好的模型进行验证
for inputs, labels in dev_loader:
input_ids = inputs['input_ids'].squeeze(1).to(device) # torch.Size([32, 35])
masks = inputs['attention_mask'].to(device) # torch.Size([32, 1, 35])
labels = labels.to(device)
output = model(input_ids, masks)
batch_loss = criterion(output, labels)
acc = (output.argmax(dim=1) == labels).sum().item()
total_acc_val += acc
total_loss_val += batch_loss.item()
print(f'''Epochs: {epoch_num + 1}
| Train Loss: {total_loss_train / len(train_dataset): .3f}
| Train Accuracy: {total_acc_train / len(train_dataset): .3f}
| Val Loss: {total_loss_val / len(dev_dataset): .3f}
| Val Accuracy: {total_acc_val / len(dev_dataset): .3f}''')
# 保存最优的模型
if total_acc_val / len(dev_dataset) > best_dev_acc:
best_dev_acc = total_acc_val / len(dev_dataset)
save_model('best.pt')
model.train()
# 保存最后的模型,以便继续训练
save_model('last.pt')
# todo 保存优化器
batch_size设置为64,占用显存约4GB。迭代训练5epoch,每个epoch耗时4分钟,第4个epoch后开发集准确率出现下降,训练过程如下图所示:
评估模型
# 加载模型
model = BertClassifier()
model.load_state_dict(torch.load(os.path.join(save_path, 'best.pt')))
model = model.to(device)
model.eval()
def evaluate(model, dataset):
model.eval()
test_loader = DataLoader(dataset, batch_size=128)
total_acc_test = 0
with torch.no_grad():
for test_input, test_label in test_loader:
input_id = test_input['input_ids'].squeeze(1).to(device)
mask = test_input['attention_mask'].to(device)
test_label = test_label.to(device)
output = model(input_id, mask)
acc = (output.argmax(dim=1) == test_label).sum().item()
total_acc_test += acc
print(f'Test Accuracy: {total_acc_test / len(dataset): .3f}')
evaluate(model, test_dataset)
开发集上表现最好的模型,在测试集上的准确率为0.943。
交互式推理
while True:
text = input('新闻标题:')
bert_input = tokenizer(text, padding='max_length',
max_length = 35,
truncation=True,
return_tensors="pt")
input_ids = bert_input['input_ids'].to(device)
masks = bert_input['attention_mask'].unsqueeze(1).to(device)
output = model(input_ids, masks)
pred = output.argmax(dim=1)
print(real_labels[pred])
# 运行结果
新闻标题: 男子炫耀市中心养烈性犬?警方介入
society
新闻标题: 北京大学召开校运动会
education
新闻标题: 深度学习大会在北京召开
science
讨论分析
-
是否需要在分类线性层后加上ReLU激活函数?
ReLU激活函数为模型提供非线性能力,但BERT中已经包含了大量非线性激活函数,感觉没有必要再添加。分类线性层紧接着损失函数计算,进行ReLU激活,改变了输出概率分布,原先负数强制归零,会不会影响到模型的学习能力?
实验表明:不加ReLU训练速度基本不变,但训练3个epoch后开发集指标出现下降,最终验证集准确率0.944,小幅提升。确实没有在分类线性层后加上ReLU激活函数的必要。
参考文献
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)