实现原理分析:
map函数数将输入的文本按照行读取, 并将Key--每一行的内容 输出 value--空。
reduce 会自动统计所有的key,我们让reduce输出key->输入的key value->空,这样就利用reduce自动合并相同的key的原理实现了数据去重。
源代码:
package com.duking.hadoop;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Dedup {
// map将输入中的value复制到输出数据的key上,并直接输出
public static class Map extends Mapper<Object, Text, Text, Text> {
private static Text line = new Text();// 每行数据
// 实现map函数
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
line = value;
context.write(line, new Text(""));
}
}
// reduce将输入中的key复制到输出数据的key上,并直接输出 这是数据区重的思想
public static class Reduce extends Reducer<Text, Text, Text, Text> {
// 实现reduce函数
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
context.write(key, new Text(""));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
// 这句话很关键
conf.set("mapred.job.tracker", "192.168.60.129:9000");
//指定带运行参数的目录为输入输出目录
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
/* 指定工程下的input2为文件输入目录 output2为文件输出目录
String[] ioArgs = new String[] { "input2", "output2" };
String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
.getRemainingArgs();*/
if (otherArgs.length != 2) { //判断路径参数是否为2个
System.err.println("Usage: Data Deduplication <in> <out>");
System.exit(2);
}
//set maprduce job name
Job job = new Job(conf, "Data Deduplication");
job.setJarByClass(Dedup.class);
// 设置Map、Combine和Reduce处理类
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
// 设置输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// 设置输入和输出目录
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
所有评论(0)