阿里巴巴开源的分布式事务中间件--Seata
文章目录Seata简介分布式事务产生背景数据库的水平分割微服务化分布式事务理论基础两阶段提交(2pc)TCC基本原理幂等控制空回滚防悬挂事务消息优缺点比较Seata解决方案AT模式(业务侵入小)第一阶段第二阶段TCC(高性能)...
文章目录
Seata简介
Seata(Simple Extensible Autonomous Transaction Architecture) 是 阿里巴巴开源的分布式事务中间件,以高效并且对业务 0 侵入的方式,解决微服务场景下面临的分布式事务问题。
附上项目github链接
目前Seata还处于不断开源升级中,并不建议在线上使用,生产环境可以考虑使用阿里云商用的GTS,附上Seata目前的升级计划,可以考虑在V1.0,即服务端HA集群版本进行线上使用
先来看下为什么会产生分布式事务问题
分布式事务产生背景
讲到事务,又得搬出经典的银行转账问题了,下面以实例说明
假设银行(bank)中有两个客户(name)张三和李四
我们需要将张三的1000元存款(sal)转到李四的账户上
目标就是张三账户减1000,李四账户加1000,不能出现中间步骤(张三减1000,李四没加)
假设dao层代码如下
public interface BankMapper {
/**
* @param userName 用户名
* @param changeSal 余额变动值
*/
public void updateSal(String userName,int changeSal);
}
对应xml中sql如下
<update id="updateSal">
update bank SET sal = sal+#{changeSal} WHERE name = #{userName}
</update>
如果两个用户对应的银行存款数据在一个数据源中,即一个数据库中,那么service层代码可以如下编写
/**
* @param fromUserName 转账人
* @param toUserName 被转账人
* @param changeSal 转账额度
*/
@Transactional(rollbackFor = Exception.class)
public void changeSal(String fromUserName,String toUserName,int changeSal) {
bankMapper.updateSal(fromUserName, -1 * changeSal);
bankMapper.updateSal(toUserName, changeSal);
}
通过spring框架下的@Transactional
注解来保证单一数据源增删改查的一致性
但是随着业务的不断扩大,用户数在不断变多,几百万几千万用户时数据可以存一个库甚至一个表里,假设有10个亿的用户?
数据库的水平分割
为了解决数据库上的瓶颈,分库是很常见的解决方案,不同用户就可能落在不同的数据库里,原来一个库里的事务操作,现在变成了跨数据库的事务操作。
此时@Transactional
注解就失效了,这就是跨数据库分布式事务问题
微服务化
当然,更多的情形是随着业务不断增长,将业务中不同模块服务拆分成微服务后,同时调用多个微服务所产生的
微服务化的银行转账情景往往是这样的
- 调用交易系统服务创建交易订单;
- 调用支付系统记录支付明细;
- 调用账务系统执行 A 扣钱;
- 调用账务系统执行 B 加钱;
如图所示,每个系统都对应一个独立的数据源,且可能位于不同机房,同时调用多个系统的服务很难保证同时成功,这就是跨服务分布式事务问题
分布式事务理论基础
两阶段提交(2pc)
两阶段提交协议(Two Phase Commitment Protocol)中,涉及到两种角色
一个事务协调者(coordinator):负责协调多个参与者进行事务投票及提交(回滚)
多个事务参与者(participants):即本地事务执行者
总共处理步骤有两个
(1)投票阶段(voting phase):协调者将通知事务参与者准备提交或取消事务,然后进入表决过程。参与者将告知协调者自己的决策:同意(事务参与者本地事务执行成功,但未提交)或取消(本地事务执行故障);
(2)提交阶段(commit phase):收到参与者的通知后,协调者再向参与者发出通知,根据反馈情况决定各参与者是否要提交还是回滚;
如果所示 1-2为第一阶段,2-3为第二阶段
如果任一资源管理器在第一阶段返回准备失败,那么事务管理器会要求所有资源管理器在第二阶段执行回滚操作。通过事务管理器的两阶段协调,最终所有资源管理器要么全部提交,要么全部回滚,最终状态都是一致的
图片来自蚂蚁金服公众号
TCC
TCC 将事务提交分为 Try - Confirm - Cancel 3个操作。其和两阶段提交有点类似,Try为第一阶段,Confirm - Cancel为第二阶段,是一种应用层面侵入业务的两阶段提交。
操作方法 | 含义 |
---|---|
Try | 预留业务资源/数据效验 |
Confirm | 确认执行业务操作,实际提交数据,不做任何业务检查,try成功,confirm必定成功,需保证幂等 |
Cancel | 取消执行业务操作,实际回滚数据,需保证幂等 |
其核心在于将业务分为两个操作步骤完成。不依赖 RM 对分布式事务的支持,而是通过对业务逻辑的分解来实现分布式事务。
下面还是以银行转账例子来说明
假设用户user表中有两个字段:可用余额(available_money)、冻结余额(frozen_money)
A扣钱对应服务A(ServiceA)
B加钱对应服务B(ServiceB)
转账订单服务(OrderService)
业务转账方法服务(BusinessService)
ServiceA,ServiceB,OrderService都需分别实现try(),confirm(),cancle()方法,方法对应业务逻辑如下
ServiceA | ServiceB | OrderService | |
---|---|---|---|
try() | 校验余额(并发控制) 冻结余额+1000 余额-1000 | 冻结余额+1000 | 创建转账订单,状态待转账 |
confirm() | 冻结余额-1000 | 余额+1000 冻结余额-1000 | 状态变为转账成功 |
cancle() | 冻结余额-1000 余额+1000 | 冻结余额-1000 | 状态变为转账失败 |
其中业务调用方BusinessService中就需要调用
ServiceA.try()
ServiceB.try()
OrderService.try()
1、当所有try()方法均执行成功时,对全局事物进行提交,即由事物管理器调用每个微服务的confirm()方法
2、 当任意一个方法try()失败(预留资源不足,抑或网络异常,代码异常等任何异常),由事物管理器调用每个微服务的cancle()方法对全局事务进行回滚
引用网上一张TCC原理的参考图片
使用TCC时要注意Try - Confirm - Cancel 3个操作的幂等控制,网络原因,或者重试操作都有可能导致这几个操作的重复执行
业务实现过程中需重点关注幂等实现,讲到幂等,以上述TCC转账例子中confirm()方法来说明
在confirm()方法中
余额-1000,冻结余额-1000,这一步是实现幂等性的关键,你会怎么做?
大家在自己系统里操作资金账户时,为了防止并发情况下数据不一致的出现,肯定会避免出现这种代码
//根据userId查到账户
Account account = accountMapper.selectById(userId);
//取出当前资金
int availableMoney = account.getAvailableMoney();
account.setAvailableMoney(availableMoney-1000);
//更新剩余资金
accountMapper.update(account);
因为这本质上是一个 读-改-写的过程,不是原子的,在并发情况下会出现数据不一致问题
所以最简单的做法是
update account set available_money = available_money-1000 where user_id=#{userId}
这利用了数据库行锁特性解决了并发情况下的数据不一致问题,但是TCC中,单纯使用这个方法适用么?
答案是不行的,该方法能解决并发单次操作下的扣减余额问题,但是不能解决多次操作带来的多次扣减问题,假设我执行了两次,按这种方案,用户账户就少了2000块
那么具体怎么做?上诉转账例子中,可以引入转账订单状态来做判断,若订单状态为已支付,则直接return
if( order!=null && order.getStatus().equals("转账成功")){
return;
}
当然,新建一张去重表,用订单id做唯一建,若插入报错返回也是可以的,不管怎么样,核心就是保证,操作幂等性
如下图所示,事务协调器在调用TCC服务的一阶段Try操作时,可能会出现因为丢包而导致的网络超时,此时事务协调器会触发二阶段回滚,调用TCC服务的Cancel操作;
TCC服务在未收到Try请求的情况下收到Cancel请求,这种场景被称为空回滚;TCC服务在实现时应当允许空回滚的执行;
那么具体代码里怎么做呢?
分析下,如果try()方法没执行,那么订单一定没创建,所以cancle方法里可以加一个判断,如果上下文中订单编号orderNo不存在或者订单不存在,直接return
if(orderNo==null || order==null){
return;
}
核心思想就是 回滚请求处理时,如果对应的具体业务数据为空,则返回成功
当然这种问题也可以通过中间件层面来实现,如,在第一阶段try()执行完后,向一张事务表中插入一条数据(包含事务id,分支id),cancle()执行时,判断如果没有事务记录则直接返回,但是现在还不支持
如下图所示,事务协调器在调用TCC服务的一阶段Try操作时,可能会出现因网络拥堵而导致的超时,此时事务协调器会触发二阶段回滚,调用TCC服务的Cancel操作;在此之后,拥堵在网络上的一阶段Try数据包被TCC服务收到,出现了二阶段Cancel请求比一阶段Try请求先执行的情况;
用户在实现TCC服务时,应当允许空回滚,但是要拒绝执行空回滚之后到来的一阶段Try请求;
这里又怎么做呢?
可以在二阶段执行时插入一条事务控制记录,状态为已回滚,这样当一阶段执行时,先读取该记录,如果记录存在,就认为二阶段回滚操作已经执行,不再执行try方法;
事务消息
事务消息更倾向于达成分布式事务的最终一致性,适用于分布式事务的提交或回滚只取决于事务发起方的业务需求,如A给B打了款并且成功了,那么下游业务B一定需要加钱这种场景,或许下了单,用户积分一定得增加这种场景。RocketMQ4.3中已经开源了事务消息,具体设计思路分析及demo演示,大家有兴趣可以看下我写的这篇文章
优缺点比较
事务方案 | 优点 | 缺点 |
---|---|---|
2PC | 实现简单 | 1、需要数据库(一般是XA支持) 2、锁粒度大,性能差 |
TCC | 锁粒度小,性能好 | 需要侵入业务,实现较为复杂,复杂业务实现幂等有难度 |
消息事务 | 业务侵入小,无需编写业务回滚补偿逻辑 | 事务消息实现难度大,强依赖第三方中间件可靠性 |
Seata解决方案
解决分布式事务问题,有两个设计初衷
- 对业务无侵入:即减少技术架构上的微服务化所带来的分布式事务问题对业务的侵入
- 高性能:减少分布式事务解决方案所带来的性能消耗
seata中有两种分布式事务实现方案,AT及TCC
- AT模式主要关注多 DB 访问的数据一致性,当然也包括多服务下的多 DB 数据访问一致性问题
- TCC 模式主要关注业务拆分,在按照业务横向扩展资源时,解决微服务间调用的一致性问题
AT模式(业务侵入小)
Seata AT模式是基于XA事务演进而来的一个分布式事务中间件,XA是一个基于数据库实现的分布式事务协议,本质上和两阶段提交一样,需要数据库支持,Mysql5.6以上版本支持XA协议,其他数据库如Oracle,DB2也实现了XA接口
角色如下
- Transaction Coordinator (TC): 事务协调器,维护全局事务的运行状态,负责协调并驱动全局事务的提交或回滚
- Transaction Manager ™: 控制全局事务的边界,负责开启一个全局事务,并最终发起全局提交或全局回滚的决议
- Resource Manager (RM): 控制分支事务,负责分支注册、状态汇报,并接收事务协调器的指令,驱动分支(本地)事务的提交和回滚
基本处理逻辑如下
Branch就是指的分布式事务中每个独立的本地局部事务
Seata 的 JDBC 数据源代理通过对业务 SQL 的解析,把业务数据在更新前后的数据镜像组织成回滚日志,利用 本地事务 的 ACID 特性,将业务数据的更新和回滚日志的写入在同一个 本地事务 中提交。
这样,可以保证:任何提交的业务数据的更新一定有相应的回滚日志存在
基于这样的机制,分支的本地事务便可以在全局事务的第一阶段提交,并马上释放本地事务锁定的资源
这也是Seata和XA事务的不同之处,两阶段提交往往对资源的锁定需要持续到第二阶段实际的提交或者回滚操作,而有了回滚日志之后,可以在第一阶段释放对资源的锁定,降低了锁范围,提高效率,即使第二阶段发生异常需要回滚,只需找对undolog中对应数据并反解析成sql来达到回滚目的
同时Seata通过代理数据源将业务sql的执行解析成undolog来与业务数据的更新同时入库,达到了对业务无侵入的效果
如果决议是全局提交,此时分支事务此时已经完成提交,不需要同步协调处理(只需要异步清理回滚日志),Phase2 可以非常快速地完成
如果决议是全局回滚,RM 收到协调器发来的回滚请求,通过 XID 和 Branch ID 找到相应的回滚日志记录,通过回滚记录生成反向的更新 SQL 并执行,以完成分支的回滚
TCC(高性能)
seata也针对TCC做了适配兼容,支持TCC事务方案,原理前面已经介绍过,基本思路就是使用侵入业务上的补偿及事务管理器的协调来达到全局事务的一起提交及回滚,详情参考demo回滚
Demo上手-AT模式Dubbo集成Seata
Demo的github项目名称是fescar-example,链接如下
要跑demo例子,首先需要下载上述链接官方demo,我下面以IDEA为例子演示demo中dubbo的分布式事务例子,另外还需要一个fescar-server,我下的版本是0.4.1,链接如下
先看下fescar-example的项目结构
其中dubbo模块就是dubbo的demo
模块中代码结构如下
配置修改
由于我本地启动了Zookeeper服务端做dubbo注册中心,所以我修改了4个dubbo配置文件中的注册中心为zk,官方默认的是用的广播,没有Zk用广播或者Redis做注册中心都可以
数据库地址,由于我们是针对Rpc远程服务做分布式事务测试,所以数据库用一个也能达到测试效果,本地启动Mysql服务,并新建名为fescar的数据库
同时修改jdbc.properties中url地址
jdbc.account.url=jdbc:mysql://localhost:3306/fescar
jdbc.account.username=root
jdbc.account.password=123456
jdbc.account.driver=com.mysql.jdbc.Driver
# storage db config
jdbc.storage.url=jdbc:mysql://localhost:3306/fescar
jdbc.storage.username=root
jdbc.storage.password=123456
jdbc.storage.driver=com.mysql.jdbc.Driver
# order db config
jdbc.order.url=jdbc:mysql://localhost:3306/fescar
jdbc.order.username=root
jdbc.order.password=123456
jdbc.order.driver=com.mysql.jdbc.Driver
再执行dubbo_biz.sql中的建表语句,创建storage_tbl,order_tbl,account_tbl 3个业务表
再执行undo_log.sql 创建seata所需记录undolog的回滚日志表
启动测试
先启动fescar-server,启动方式
sh fescar-server.sh $LISTEN_PORT $PATH_FOR_PERSISTENT_DATA
参数有两个,LISTEN_PORT代表端口号,PATH_FOR_PERSISTENT_DATA表示Seata持久化数据存放路径
将安装包解压后cd到bin目录下,我这里指定端口号为8091,data路径为我自己创建的一个目录
sh fescar-server.sh 8091 /Users/chenyin/fescar/data
启动成功效果图如下
回到项目代码中
先启动DubboAccountServiceStarter
,其初始化时向account_tbl表中插入一个用户编号为
U100001的用户,初始金额为999
再启动DubboOrderServiceStarter
,DubboStorageServiceStarter
,DubboStorageServiceStarter中默认初始化一个商品编号为C00321的商品,初始库存100
看下BusinessService业务处理类,里面调用了库存类(StorageService)扣减库存,调用订单类(OrderService)下单,其中手动抛出RuntimeException模拟分布式事务中的异常情况
@GlobalTransactional(timeoutMills = 300000, name = "dubbo-demo-tx")
public void purchase(String userId, String commodityCode, int orderCount) {
LOGGER.info("purchase begin ... xid: " + RootContext.getXID());
storageService.deduct(commodityCode, orderCount);
orderService.create(userId, commodityCode, orderCount);
throw new RuntimeException("xxx");
}
如果没有throw new RuntimeException(“xxx”); 正确的业务操作结果是用户账户余额减400变成599,库存减2变成98,具体为什么是余额-400,库存-2大家看下demo中具体业务类的代码就知道,不多说。异常的情况,也就是分布式事务回滚的情况,应该是余额还是999,库存还是100
先看下有抛出异常的情况,启动业务类,DubboBusinessTester
,执行结果如下
检查下数据库中数据是否正确,有没发生数据未回滚的情况
数据正确无误,证明数据正确的回滚了。上面介绍过了,Seata是根据undolog中记录来回滚的,但是异常回滚后undolog表却为空?怎么回事,这是因为undolog日志被删除了,想要看到undolog表中记录,我们打断点来看,在异常还没抛出时打断点,看下数据库undolog表中数据情况
断点处触发后,查看undolog表,可以看到3条记录,3个branch_id对应3个rpc分支事务,也就对应3个业务表的回滚日志,一个xid标识这3个分支事务处于一个全局分布式事务中
其中rollbackinfo字段是bytes类型,看不到具体数据,怎么办?我们把数据导成txt格式
数据内容如下,可以看到是BASE64加密过的,进行解密
最终内容如下,我只贴出第一行数据中的rollback_info,可以看到其中记录了数据操作前后的镜像数据beforeImage,afterImage,如果发生回滚,可以通过xid,branchid定位到undolog中的rollback_info,并将beforeImage中内容反解析成sql来达到回滚目的的
{
"branchId": 2008522332,
"sqlUndoLogs": [
{
"afterImage": {
"rows": [
{
"fields": [
{
"keyType": "PrimaryKey",
"name": "id",
"type": 4,
"value": 3
},
{
"keyType": "NULL",
"name": "count",
"type": 4,
"value": 98
}
]
}
],
"tableName": "storage_tbl"
},
"beforeImage": {
"rows": [
{
"fields": [
{
"keyType": "PrimaryKey",
"name": "id",
"type": 4,
"value": 3
},
{
"keyType": "NULL",
"name": "count",
"type": 4,
"value": 100
}
]
}
],
"tableName": "storage_tbl"
},
"sqlType": "UPDATE",
"tableName": "storage_tbl"
}
],
"xid": "192.168.202.197:8091:2008522331"
}
- 至于不抛出异常的情况,这里就不多做演示了,注释掉抛出异常的代码,重新运行一下就行
Demo上手-TCC模式Dubbo集成Seata
tcc模块下有个transfer-tcc-sample项目,不过数据库不是Mysql的,下面进行部分修改并演示
先看下代码结构
核心是action包下的2个类,都暴露成了dubbo服务,同时使用注解标记为TCC服务,并实现try-commit-cancle方法
FirsetAction-对应扣钱service
SecondAction-对应加钱service
看下FirsetAction源码,@TwoPhaseBusinessAction
是TCC服务参与者必须加的注解,指定服务名称,提交方法commitMethod
及回滚方法rollbackMethod
,SecondAction同理
public interface FirstTccAction {
/** * 一阶段方法 * * @param businessActionContext * @param accountNo * @param amount */ @TwoPhaseBusinessAction(name = "firstTccAction", commitMethod = "commit", rollbackMethod = "rollback") public boolean prepareMinus(BusinessActionContext businessActionContext, @BusinessActionContextParameter(paramName = "accountNo") String accountNo, @BusinessActionContextParameter(paramName = "amount") double amount); /** * 二阶段提交 * @param businessActionContext * @return */ public boolean commit(BusinessActionContext businessActionContext); /** * 二阶段回滚 * @param businessActionContext * @return */ public boolean rollback(BusinessActionContext businessActionContext);
}
transfer包下TransferService是具体业务实现类(即转账操作类)
看下TransferServiceImpl源码,转账方法上加了 @GlobalTransactional
将方法纳入事务管理器管理范围
public class TransferServiceImpl implements TransferService {
private FirstTccAction firstTccAction; private SecondTccAction secondTccAction; /** * 转账操作 * @param from 扣钱账户 * @param to 加钱账户 * @param amount 转账金额 * @return */ @Override @GlobalTransactional public boolean transfer(final String from, final String to, final double amount) { //扣钱参与者,一阶段执行 boolean ret = firstTccAction.prepareMinus(null, from, amount); if(!ret){ //扣钱参与者,一阶段失败; 回滚本地事务和分布式事务 throw new RuntimeException("账号:["+from+"] 预扣款失败"); } //加钱参与者,一阶段执行 ret = secondTccAction.prepareAdd(null, to, amount); if(!ret){ throw new RuntimeException("账号:["+to+"] 预收款失败"); } System.out.println(String.format("transfer amount[%s] from [%s] to [%s] finish.", String.valueOf(amount), from, to)); return true; } public void setFirstTccAction(FirstTccAction firstTccAction) { this.firstTccAction = firstTccAction; } public void setSecondTccAction(SecondTccAction secondTccAction) { this.secondTccAction = secondTccAction; }
}
由于我本地启动的Mysql服务,而demo是以h2Database为例,所以pom中引入mysql相关包
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
修改from-datasource-bean.xml,from-datasource-bean.xml中数据源配置,我这里转出账户对应xa1数据库,转入账户对应xa2数据库
<bean id="fromAccountDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName">
<value>com.mysql.jdbc.Driver</value>
</property>
<property name="url">
<value>jdbc:mysql://localhost:3306/xa1</value>
</property>
<property name="username">
<value>root</value>
</property>
<property name="password">
<value>123456</value>
</property>
</bean>
<bean id="toAccountDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName">
<value>com.mysql.jdbc.Driver</value>
</property>
<property name="url">
<value>jdbc:mysql://localhost:3306/xa2</value>
</property>
<property name="username">
<value>root</value>
</property>
<property name="password">
<value>123456</value>
</property>
</bean>
启动测试
1、配置修改完毕,先在本地启动fescar-server
2、然后启动 TransferProviderStarter 暴露dubbo服务并初始化数据库,数据库初始化完后,数据如下
xa1库account表
xa2库account表
3、启动TransferApplication,其main方法执行2个子方法
/**
* 执行转账成功 demo
*
* @param initAmount 初始化余额
* @param transferAmount 转账余额
*/
private static void doTransferSuccess(double initAmount, double transferAmount) throws SQLException {
//执行转账操作
doTransfer("A", "C", transferAmount);
//校验A账户余额:initAmount - transferAmount checkAmount(fromAccountDAO, "A", initAmount - transferAmount); //校验C账户余额:initAmount + transferAmount checkAmount(toAccountDAO, "C", initAmount + transferAmount); } /** * 执行转账 失败 demo, 'B' 向未知用户 'XXX' 转账,转账失败分布式事务回滚 * @param initAmount 初始化余额 * @param transferAmount 转账余额 */ private static void doTransferFailed(int initAmount, int transferAmount) throws SQLException { // 'B' 向未知用户 'XXX' 转账,转账失败分布式事务回滚 try{ doTransfer("B", "XXX", transferAmount); }catch (Throwable t){ System.out.println("从账户B向未知账号XXX转账失败."); } //校验A2账户余额:initAmount checkAmount(fromAccountDAO, "B", initAmount); //账户XXX 不存在,无需校验 }
执行结果应该是doTransferSuccess()执行成功,A账户变成90,C账户变成110
doTransferFailed()执行失败(secondTccAction的try方法中有对转账接收账户做校验,账户不存在,抛异常),B账户数据还是100
执行下看下结果
xa1库数据如下
xa2库数据如下
说明TCC分布式事务生效,如果不是微服务带来的分布式事务问题,而是本地分库操作带来的事务问题,可以看下local-tcc-sample例子
该demo中并未对3个方法做幂等控制,实际业务实现中需多加注意
最后贴上Seata中AT、TCC模式源码的分析,有兴趣的可以看一下哦
Seata实战-AT模式源码分析
Seata实战-TCC模式源码分析
</div>
<link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-e9f16cbbc2.css" rel="stylesheet">
</div>
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)