说起深度学习,目前流行的主要有TensorFlow和Pytorch。其中TensorFlow目前主要应用于工业界,Pytorch在学术界用的比较多。TensorFlow目前正在向2.0转型,由于2.0与1.0差异较大,所以TensorFlow的生态社区目前并不是很友好。而Pytorch的生态社区较为完善。
在官网上找到Windows下的安装说明
在这里插入图片描述
所以,打开cmd,输入conda install pytorch torchvision cudatoolkit=10.2 -c pytorch 即可自动安装。
编译环境选择在Vscode中进行,没有Tab索引功能,差评~
参考教程为:《PyTorch深度学习实践》完结合集
第一个例子,线性模型

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

def forward(x):
    return x*w

def loss(x,y):
    y_pred = forward(x)
    return (y_pred-y)*(y_pred-y)

w_list = []
mse_list = []

for w in np.arange(0.0, 4.1, 0.1):
    print("w=",w)
    l_sum = 0
    for x_val, y_val in zip(x_data,y_data):
        y_pred_val = forward(x_val)
        loss_val = loss(x_val,y_val)
        l_sum += loss_val
        print('\t',x_val,y_val,y_pred_val,loss_val)
    print('MSE = ', l_sum/3)
    w_list.append(w)
    mse_list.append(l_sum/3)
plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

输出结果为
在这里插入图片描述
代码含义为通过不断遍历尝试w值,找到最小的损失值,其中loss函数定义为 L o s s = ( y p r e d − y ) 2 Loss = (y_{pred}-y)^2 Loss=(ypredy)2.
下面的代码实现基于梯度下降的线性回归问题。注意显示曲线的时候,需要将for循环中生成的变量保存在list中。

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0

def forward(x):
    return x*w

def cost(xs,ys):
    cost = 0
    for x,y in zip(xs,ys):
        y_pred = forward(x)
        cost += (y_pred - y)**2
    return cost / len(xs)

def gradient(xs,ys):
    grad = 0
    for x,y in zip(xs,ys):
        grad += 2*x*(x*w - y)
    return grad/ len(xs)

print('Predic (before training)',4, forward(4))

epoch_list = []
cost_list = []
for epoch in range(100):
    cost_val = cost(x_data,y_data)
    grad_val = gradient(x_data,y_data)
    w -= 0.01*grad_val
    print('Epoch:',epoch,'w=',w,'loss=',cost_val)
    epoch_list.append(epoch)
    cost_list.append(cost_val)
print('Predic (after training)',4,forward(4))

plt.plot(epoch_list,cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

在这里插入图片描述
示例三:使用反向梯度,此时已经开始import torch,不再使用numpy库了,所以,梯度函数就不用定义了,一个backward解决问题。

import torch
import matplotlib.pyplot as plt

x_data = [1,2,3]
y_data = [2,4,6]

w = torch.Tensor([1.0])
w.requires_grad = True
def forward(x):
    return x*w
    
def loss(x,y):
    y_pred = forward(x)
    return (y_pred - y)**2

epoch_list = []
loss_list = []

print("predict (before training)",4,forward(4).item())
for epoch in range(100):
    for x,y in zip(x_data,y_data):
        l = loss(x,y)
        l.backward()
        # print('\t grad:',x,y,w.grad.item())
        w.data = w.data - 0.01*w.grad.data

        w.grad.data.zero_()
    epoch_list.append(epoch)
    loss_list.append(l.item())

    # print("progess:", epoch,l.item())
print("predict (after training)", 4, forward(4).item())    
plt.plot(epoch_list,loss_list)
plt.xlabel("epoch")
plt.ylabel("loss")
plt.show()

在这里插入图片描述
下面的例子采用torch中的库直接完成线性化模型的回归问题。

import torch
import matplotlib.pyplot as plt

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[2.0],[4.0],[6.0]])

class LinearModel(torch.nn.Module):  #继承于nn.Module
    def __init__(self):     #构造函数
        super(LinearModel,self).__init__() #调用父类的构造
        self.linear = torch.nn.Linear(1,1)  #pytorch中的一个类,nn.linear,
        #继承于 Module 
        # 成员函数 weight,bias

    def forward(self,x):    #必须叫这个名字 ,父类中有forward这个函数
        #这个地方相当于override
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()
criterion = torch.nn.MSELoss(size_average=False) 
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)  
            #  model.parameter()自动加载权重-all 权重  lr 自动学习率
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred=',y_test.data)

下面的代码表示二分类问题

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import numpy as np

x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

class LogisticRegressionModel(torch.nn.Module):  #继承于nn.Module
    def __init__(self):     #构造函数
        super(LogisticRegressionModel,self).__init__() #调用父类的构造
        self.linear = torch.nn.Linear(1,1)  #pytorch中的一个类,nn.linear,
        #继承于 Module 
        # 成员函数 weight,bias

    def forward(self,x):    #必须叫这个名字 ,父类中有forward这个函数
        #这个地方相当于override
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(size_average=False) 
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)  
            #  model.parameter()自动加载权重-all 权重  lr 自动学习率
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())

x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred=',y_test.data)

x = np.linspace(0,10,200)
x_t = torch.Tensor(x).view((200,1))
y_t = model(x_t)
y = y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Hours')
plt.ylabel('Probaility of Pass')
plt.grid()
plt.show()

在这里插入图片描述
上面的代码表示的一层神经网络,下面的代码增加难度,改成多层神经网络串联,所以在模型定义的时候进行了相应的修改。

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import numpy as np

# x_data = torch.Tensor([[1.0],[2.0],[3.0]])
# y_data = torch.Tensor([[0],[0],[1]])
xy = np.loadtxt('diabetes.csv.gz',delimiter=',',dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1])
y_data = torch.from_numpy(xy[:,[-1]])

class Model(torch.nn.Module):  #继承于nn.Module
    def __init__(self):     #构造函数
        super(Model,self).__init__() #调用父类的构造
        self.linear1 = torch.nn.Linear(8,6)  #pytorch中的一个类,nn.linear,
        #继承于 Module 
        # 成员函数 weight,bias
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.sigmoid = torch.nn.Sigmoid()


    def forward(self,x):    #必须叫这个名字 ,父类中有forward这个函数
        #这个地方相当于override
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        # y_pred = torch.sigmoid(self.linear(x))
        return x

model = Model()
epoch_list = []
loss_list = []
criterion = torch.nn.BCELoss(size_average=True) 
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)  
            #  model.parameter()自动加载权重-all 权重  lr 自动学习率
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch_list.append(epoch)
    loss_list.append(loss.item())

plt.plot(epoch_list,loss_list)
# plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid()
plt.show()

显示结果如下图所示:
在这里插入图片描述
上述例子,在导入数据的时候,采用的方式为全部数据一次性导入,这对于大的数据集会把内存消耗完。所以可以采用dataloader解决上述问题。示例程序如下:

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import numpy as np
from torch.utils.data import Dataset,DataLoader

class DiabetesDataset(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath, delimiter=',',dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:,:-1])
        self.y_data = torch.from_numpy(xy[:,[-1]])
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]
    def __len__(self):
        return self.len

dataset = DiabetesDataset('diabetes.csv.gz')
train_loader = DataLoader(dataset = dataset,
                            batch_size = 32,
                            shuffle = True,
                            num_workers =2)


class Model(torch.nn.Module):  #继承于nn.Module
    def __init__(self):     #构造函数
        super(Model,self).__init__() #调用父类的构造
        self.linear1 = torch.nn.Linear(8,6)  #pytorch中的一个类,nn.linear,
        #继承于 Module 
        # 成员函数 weight,bias
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.sigmoid = torch.nn.Sigmoid()


    def forward(self,x):    #必须叫这个名字 ,父类中有forward这个函数
        #这个地方相当于override
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        # y_pred = torch.sigmoid(self.linear(x))
        return x

model = Model()
epoch_list = []
loss_list = []
criterion = torch.nn.BCELoss(reduction='sum') 
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)  
            #  model.parameter()自动加载权重-all 权重  lr 自动学习率
if __name__=='__main__':
    for epoch in range(100):
        for i,data in enumerate(train_loader,0):
            inputs,labels = data
            y_pred  = model(inputs)
            loss = criterion(y_pred,labels)
            print(epoch,i,loss.item())
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        epoch_list.append(epoch)
        loss_list.append(loss.item())
    plt.plot(epoch_list,loss_list)
    # plt.plot([0,10],[0.5,0.5],c='r')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.grid()
    plt.show()

上述程序中,存在如下问题
在这里插入图片描述
解决方法为:
在这里插入图片描述

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐