自己写程序利用lenet模型识别手写数字
自己编写程序,将手写图片送入训练得到的lenet模型,评估识别结果。代码https://github.com/lhnows/mnisTest如果自己的caffe是用CMakeLists编译安装的,这样的话,可以运行如下的CMakeLists来编译自己的调用了caffe库的程序CMakeLists.txtcmake_minimum_required (VERSION 2.8)PROJECT
·
自己编写程序,将手写图片送入训练得到的lenet模型,评估识别结果。
code:https://github.com/lhnows/caffeProjects
如果自己的caffe是用CMakeLists编译安装的,这样的话,可以运行如下的CMakeLists来编译自己的调用了caffe库的程序
CMakeLists.txt
cmake_minimum_required (VERSION 2.8)
PROJECT (mnistTest)
# Requires OpenCV v2.4.1 or later
FIND_PACKAGE( OpenCV REQUIRED )
IF (${OpenCV_VERSION} VERSION_LESS 2.4.1)
MESSAGE(FATAL_ERROR "OpenCV version is not compatible : ${OpenCV_VERSION}. requires atleast OpenCV v2.4.1")
ENDIF()
find_package(Caffe)
include_directories(${Caffe_INCLUDE_DIRS})
add_definitions(${Caffe_DEFINITIONS})
add_executable(${PROJECT_NAME} mnistTest.cpp)
include_directories ( /Users/liuhao/devlibs/deeplearning/caffe/install/include
/usr/local/include
/usr/local/cuda/include )
target_link_libraries(${PROJECT_NAME} ${Caffe_LIBRARIES}
${OpenCV_LIBS} )
mnistTest.cpp
#define USE_OPENCV 1
#define CPU_ONLY 1
//貌似caffe有3种矩阵计算加速方式 mkl accelerate blas,本人Mac编译的可能是下面这种(其他会报错找不到头文件)
//#define USE_ACCELERATE
#include <iostream>
#include <string>
#include <caffe/caffe.hpp>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "head.h"
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <utility>
#include <vector>
using namespace caffe;
using namespace cv;
cv::Point previousPoint(-1, -1), nowPoint(-1, -1);
Mat srcimage=Mat::zeros(280,280,CV_8UC1);
Mat srcimageori = Mat::zeros(280, 280, CV_8UC1);
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file);
int Classify(const cv::Mat& img);
private:
std::vector<int> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
};
Classifier::Classifier(const string& model_file,
const string& trained_file)
{
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
}
/* Return the top N predictions. */
int Classifier::Classify(const cv::Mat& img) {
std::vector<int> output = Predict(img);
std::vector<int>::iterator iter=find(output.begin(), output.end(), 1);
int prediction = distance(output.begin(), iter);
return prediction<10 ? prediction:0;
}
std::vector<int> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels);
Preprocess(img, &input_channels);
net_->Forward();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<int>(begin, end);
}
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::split(sample_float, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
static void on_Mouse(int event, int x, int y, int flags, void*)
{
if (event == EVENT_LBUTTONUP || !(flags&EVENT_FLAG_LBUTTON))
{
previousPoint = cv::Point(-1,-1);
}
else
if (event == EVENT_LBUTTONDOWN)
{
previousPoint = cv::Point(x, y);
}
else if (event == EVENT_MOUSEMOVE || (flags&EVENT_FLAG_LBUTTON))
{
cv::Point pt(x, y);
if (previousPoint.x<0)
{
previousPoint = pt;
}
line(srcimage, previousPoint, pt, Scalar(255), 16, 8, 0);
previousPoint = pt;
imshow("result", srcimage);
}
}
int main(int argc, char** argv)
{
::google::InitGoogleLogging(argv[0]);
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
string model_file = "lenet.prototxt";
string trained_file = "lenet_iter_10000.caffemodel";
Classifier classifier(model_file, trained_file);
std::cout << "------directed by watersink------" << std::endl;
std::cout << "------------enter:退出-----------" << std::endl;
std::cout << "--------------1:还原-------------" << std::endl;
std::cout << "-------------2:写数字------------" << std::endl;
std::cout << "-----lhnows@qq.com-----" << std::endl;
imshow("result", srcimage);
setMouseCallback("result", on_Mouse, 0);
while (1)
{
char c = (char)waitKey();
if (c == 27)
break;
if (c=='1')
{
srcimageori.copyTo(srcimage);
imshow("result", srcimage);
}
if (c == '2')
{
cv::Mat img;
cv::resize(srcimage, img, cv::Size(28, 28));
CHECK(!img.empty()) << "Unable to decode image " << std::endl;
int prediction = classifier.Classify(img);
std::cout << "prediction:" << prediction << std::endl;
imshow("result", srcimage);
}
}
waitKey();
return 0;
}
head.h
#include <caffe/common.hpp>
#include <caffe/layer.hpp>
#include <caffe/layer_factory.hpp>
#include <caffe/layers/input_layer.hpp>
#include <caffe/layers/inner_product_layer.hpp>
#include <caffe/layers/dropout_layer.hpp>
#include <caffe/layers/conv_layer.hpp>
#include <caffe/layers/relu_layer.hpp>
#include <caffe/layers/pooling_layer.hpp>
#include <caffe/layers/softmax_layer.hpp>
namespace caffe
{
extern INSTANTIATE_CLASS(InputLayer);
extern INSTANTIATE_CLASS(InnerProductLayer);
extern INSTANTIATE_CLASS(DropoutLayer);
extern INSTANTIATE_CLASS(ConvolutionLayer);
//REGISTER_LAYER_CLASS(Convolution);
extern INSTANTIATE_CLASS(ReLULayer);
//REGISTER_LAYER_CLASS(ReLU);
extern INSTANTIATE_CLASS(PoolingLayer);
//REGISTER_LAYER_CLASS(Pooling);
extern INSTANTIATE_CLASS(SoftmaxLayer);
//REGISTER_LAYER_CLASS(Softmax);
}
cmake.. & make
$ cmake ..
-- The C compiler identification is AppleClang 8.1.0.8020042
-- The CXX compiler identification is AppleClang 8.1.0.8020042
-- Check for working C compiler: /Library/Developer/CommandLineTools/usr/bin/cc
-- Check for working C compiler: /Library/Developer/CommandLineTools/usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /Library/Developer/CommandLineTools/usr/bin/c++
-- Check for working CXX compiler: /Library/Developer/CommandLineTools/usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Found OpenCV: /usr/local (found version "3.2.0")
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/liuhao/projects/caffeProjects/mnistTest/build
$ make
Scanning dependencies of target mnistTest
[ 50%] Building CXX object CMakeFiles/mnistTest.dir/mnistTest.cpp.o
[100%] Linking CXX executable mnistTest
[100%] Built target mnistTest
输入./mnistTests 执行
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
已为社区贡献1条内容
所有评论(0)