中文文档: http://sklearn.apachecn.org/cn/0.19.0/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/0.19.0/tutorial/basic/tutorial.html

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

1.1. 广义线性模型

下面是一组用于回归的方法,其中目标期望值 y是输入变量 x 的线性组合。 在数学概念中,如果 \hat{y} 是预测值 value.

\hat{y}(w, x) = w_0 + w_1 x_1 + ... + w_p x_p

在整个模块中,我们定义向量 w = (w_1,..., w_p) 作为 coef_ 定义 w_0 作为 intercept_.

如果需要使用广义线性模型进行分类,请参阅 logistic 回归 . logistic 回归.

1.1.1. 普通最小二乘法

LinearRegression 适合一个带有系数 w = (w_1, ..., w_p) 的线性模型,使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。其数学表达式为:

\underset{w}{min\,} {|| X w - y||_2}^2

../_images/sphx_glr_plot_ols_0011.png

LinearRegression 会调用 fit 方法来拟合数组 X, y,并且将线性模型的系数 w 存储在其成员变量 ``coef_``中:

>>>
>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
>>> reg.coef_
array([ 0.5,  0.5])

然而,对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性。当各项是相关的,且设计矩阵 X 的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最小二乘估计对于随机误差非常敏感,产生很大的方差。例如,在没有实验设计的情况下收集到的数据,这种多重共线性(multicollinearity) 的情况可能真的会出现。

1.1.1.1. 普通最小二乘法复杂度

该方法使用 X 的奇异值分解来计算最小二乘解。如果 X 是一个 size 为 (n, p) 的矩阵,设 n \geq p ,则该方法花费的成本为 O(n p^2)

1.1.2. 岭回归

Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 (普通最小二乘)的一些问题。 岭系数最小化一个带罚项的残差平方和,

\underset{w}{min\,} {​{|| X w - y||_2}^2 + \alpha {||w||_2}^2}

其中, \alpha \geq 0 是控制收缩量复杂性的参数: \alpha, 的值越大,收缩量越大,因此系数对共线性变得更加鲁棒。

../_images/sphx_glr_plot_ridge_path_0011.png

与其他线性模型一样, Ridge 采用 fit 将采用其 w 存储在其 coef_ 成员中:

>>>
>>> from sklearn import linear_model
>>> reg = linear_model.Ridge (alpha = .5)
>>> reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1]) 
Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,
      normalize=False, random_state=None, solver='auto', tol=0.001)
>>> reg.coef_
array([ 0.34545455,  0.34545455])
>>> reg.intercept_ 
0.13636...

举例:

  • :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py`( 作为正则化的函数,绘制岭系数 )
  • :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`( 使用稀疏特征的文本文档分类 )

1.1.2.1. 岭回归的复杂度

这种方法与 普通最小二乘法 (普通最小二乘方法)的复杂度是相同的.

1.1.2.2. 设置正则化参数:广义交叉验证

RidgeCV 通过内置的 Alpha 参数的交叉验证来实现岭回归。 该对象与 GridSearchCV 的使用方法相同,只是它默认为 Generalized Cross-Validation(广义交叉验证 GCV),这是一种有效的留一验证方法(LOO-CV):

>>>
>>> from sklearn import linear_model
>>> reg = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
>>> reg.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])       
RidgeCV(alphas=[0.1, 1.0, 10.0], cv=None, fit_intercept=True, scoring=None,
    normalize=False)
>>> reg.alpha_                                      
0.1

参考

1.1.3. Lasso

The Lasso 是估计稀疏系数的线性模型。 它在一些情况下是有用的,因为它倾向于使用具有较少参数值的情况,有效地减少给定解决方案所依赖变量的数量。 因此,Lasso及其变体是压缩感知领域的基础。 在一定条件下,它可以恢复一组非零权重的精确集 (见 Compressive sensing: tomography reconstruction with L1 prior (Lasso)).

在数学上,它由一个线性模型组成,以 \ell_1 为准。 其目标函数的最小化是:

\underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha ||w||_1}

lasso estimate 解决了加上罚项 \alpha ||w||_1 的最小二乘法的最小化,其中, \alpha 是一个常数, ||w||_1 是参数向量的 \ell_1-norm 范数。

Lasso 类的实现使用了 coordinate descent (坐标下降算法)来拟合系数。 查看 最小角回归 用于另一个实现:

>>>
>>> from sklearn import linear_model
>>> reg = linear_model.Lasso(alpha = 0.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
   normalize=False, positive=False, precompute=False, random_state=None,
   selection='cyclic', tol=0.0001, warm_start=False)
>>> reg.predict([[1, 1]])
array([ 0.8])

对于较低级别的任务,同样有用的是:func:lasso_path。它能够通过搜索所有可能的路径上的值来计算系数。

举例:

Note

   

Feature selection with Lasso(使用 Lasso 进行 Feature 的选择)

由于 Lasso 回归产生稀疏模型,因此可以用于执行特征选择,详见 基于 L1 的特征选取 (基于L1的特征选择).

1.1.3.1. 设置正则化参数

alpha 参数控制估计系数的稀疏度。
1.1.3.1.1. 使用交叉验证

scikit-learn 通过交叉验证来公开设置 Lasso alpha 参数的对象: LassoCV and LassoLarsCV。 LassoLarsCV 是基于下面解释的 :ref:`least_angle_regression`(最小角度回归)算法。

对于具有许多线性回归的高维数据集, LassoCV 最常见。 然而,LassoLarsCV 在寻找 alpha parameter 参数值上更具有优势,而且如果样本数量与特征数量相比非常小时,通常 LassoLarsCV 比 LassoCV 要快。

lasso_cv_1 lasso_cv_2

1.1.3.1.2. 基于信息标准的模型选择

有多种选择时,估计器 LassoLarsIC 建议使用 Akaike information criterion (Akaike 信息准则)(AIC)和 Bayes Information criterion (贝叶斯信息准则)(BIC)。 当使用 k-fold 交叉验证时,正则化路径只计算一次而不是k + 1次,所以找到α的最优值是一种计算上更便宜的替代方法。 然而,这样的标准需要对解决方案的自由度进行适当的估计,对于大样本(渐近结果)导出,并假设模型是正确的,即数据实际上是由该模型生成的。 当问题严重受限(比样本更多的特征)时,他们也倾向于打破。

../_images/sphx_glr_plot_lasso_model_selection_0011.png

举例:

  • :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py`(Lasso 型号选择:交叉验证/AIC/BIC)
1.1.3.1.3. 与 SVM 的正则化参数的比较

根据估计器和模型优化的精确目标函数,在 alpha 和 SVM 的正则化参数之间是等值的,其中 C 是通过 alpha = 1 / C 或者 alpha = 1 / (n_samples * C) 得到的。

1.1.4. 多任务 Lasso

MultiTaskLasso 是一个估计多元回归稀疏系数的线性模型:  y 是一个  (n_samples, n_tasks) 的二维数组,其约束条件和其他回归问题(也称为任务)是一样的,都是所选的特征值。

下图比较了通过使用简单的 Lasso 或 MultiTaskLasso 得到的 W 中非零的位置。 Lasso 估计分散的产生着非零值,而 MultiTaskLasso 的所有列都是非零的。

multi_task_lasso_1 multi_task_lasso_2

拟合 time-series model ( 时间序列模型 ),强制任何活动的功能始终处于活动状态。

举例:

在数学上,它由一个线性模型组成,以混合的 \ell_1 \ell_2 作为正则化器进行训练。目标函数最小化是:

\underset{w}{min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro} ^ 2 + \alpha ||W||_{21}}

其中 Fro 表示 Frobenius 标准:

||A||_{Fro} = \sqrt{\sum_{ij} a_{ij}^2}

并且 \ell_1 \ell_2 读取为:

||A||_{2 1} = \sum_i \sqrt{\sum_j a_{ij}^2}

MultiTaskLasso 类中的实现使用了坐标下降作为拟合系数的算法。

1.1.5. 弹性网络

弹性网络 是一种使用L1,L2范数作为先验正则项训练的线性回归模型。 这种组合允许学习到一个只有少量参数是非零稀疏的模型,就像 Lasso 一样, 但是它仍然保持 一些像 Ridge 的正则性质。我们可利用 l1_ratio 参数控制L1和L2的凸组合。

弹性网络在很多特征互相联系的情况下是非常有用的。Lasso很可能只随机考虑这些特征中的一个,而弹性网络更倾向于选择两个。

在实践中,Lasso 和 Ridge 之间权衡的一个优势是它允许在循环过程(Under rotate)中继承 Ridge 的稳定性。

在这里,最小化的目标函数是

\underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_2 ^ 2 + \alpha \rho ||w||_1 +\frac{\alpha(1-\rho)}{2} ||w||_2 ^ 2}

ElasticNetCV 类可以通过交叉验证来设置参数

alpha (\alpha) 和 l1_ratio (\rho) 。

1.1.6. 多任务弹性网络

MultiTaskElasticNet 是一个对多回归问题估算稀疏参数的弹性网络:  Y 是一个二维数组,形状是  (n_samples,n_tasks)。 其限制条件是和其他回归问题一样,是选择的特征,也称为 tasks.。

从数学上来说, 它包含一个用 \ell_1 \ell_2 先验 and \ell_2 先验为正则项训练的线性模型 目标函数就是最小化:

\underset{W}{min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro}^2 + \alpha \rho ||W||_{2 1} +\frac{\alpha(1-\rho)}{2} ||W||_{Fro}^2}

在 MultiTaskElasticNet 类中的实现采用了坐标下降法求解参数。

在 MultiTaskElasticNetCV 中可以通过交叉验证来设置参数 alpha (\alpha) 和 l1_ratio (\rho) 。

1.1.7. 最小角回归

最小角回归 (LARS) 是对高维数据的回归算法, 由Bradley Efron, Trevor Hastie, Iain Johnstone 和 Robert Tibshirani开发完成。 LARS和逐步回归很像。 在每一步,它寻找与响应最有关联的 预测。当有很多预测由相同的关联时,它没有继续利用相同的预测,而是在这些预测中找出应该等角的方向。

LARS的优点:

  • 当p >> n,该算法数值运算上非常有效。(例如当维度的数目远超点的个数)
  • 它在计算上和前向选择一样快,和普通最小二乘法有相同的运算复杂度。
  • 它产生了一个完整的分段线性的解决路径,在交叉验证或者其他相似的微调模型的方法上非常有用。
  • 如果两个变量对响应几乎有相等的联系,则它们的系数应该有相似的增长率。因此这个算法和我们直觉 上的判断一样,而且还更加稳定。
  • 它也很容易改变,为其他估算器提供解,比如Lasso。

LARS的缺点:

  • 因为LARS是建立在循环拟合剩余变量上的,所以它对噪声非常敏感。这个问题,在2004年统计年鉴的文章由Weisberg详细讨论。

LARS模型可以在 Lars ,或者它的底层实现 lars_path 中被使用。

1.1.8. LARS Lasso

LassoLars 是一个使用LARS算法的lasso模型, 不同于基于坐标下降法的实现,它可以得到一个精确解,也就是一个 关于自身参数标准化后的一个分段线性解。

../_images/sphx_glr_plot_lasso_lars_0011.png
>>>
>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])  
LassoLars(alpha=0.1, copy_X=True, eps=..., fit_intercept=True,
     fit_path=True, max_iter=500, normalize=True, positive=False,
     precompute='auto', verbose=False)
>>> reg.coef_    
array([ 0.717157...,  0.        ])

Lars算法提供了一个可以几乎无代价的给出正则化系数的完整路径,因此常利用函数 lars_path 来取回路径。

1.1.8.1. 数学表达式

该算法和逐步回归非常相似,但是它没有在每一步包含变量,它估计的参数是根据与 其他剩余变量的联系来增加的。

该算法没有给出一个向量的结果,而是在LARS的解中,对每一个变量进行总体变量的L1正则化后显示的一条曲线。 完全的参数路径存在``coef_path_``下。它的尺寸是 (n_features, max_features+1)。 其中第一列通常是全0列。

参考文献:

1.1.9. 正交匹配追踪法(OMP)

OrthogonalMatchingPursuit(正交匹配追踪法) 和 orthogonal_mp(正交匹配追踪) 使用了OMP算法近似拟合了一个带限制的线性模型,该限制限制了模型的非0系数(例:L0范数)。

就像最小角回归一样,作为一个前向特征选择方法,正交匹配追踪法可以近似一个固定非0元素的最优 向量解:

\text{arg\,min\,} ||y - X\gamma||_2^2 \text{ subject to } \||\gamma||_0 \leq n_{nonzero\_coefs}

正交匹配追踪法也可以不用特定的非0参数元素个数做限制,而是利用别的特定函数定义其损失函数。 这个可以表示为:

\text{arg\,min\,} ||\gamma||_0 \text{ subject to } ||y-X\gamma||_2^2 \\leq \text{tol}

OMP是基于每一步的贪心算法,其每一步元素都是与当前残差高度相关的。它跟较为简单的匹配追踪 (MP)很相似,但是相比MP更好,在每一次迭代中,可以利用正交投影到之前选择的字典元素重新计算残差。

1.1.10. 贝叶斯回归

贝叶斯回归可以用于在预估阶段的参数正则化: 正则化参数的选择不是通过人为的选择,而是通过手动调节数据值来实现。

上述过程可以通过引入 无信息先验 于模型中的超参数来完成。 在 岭回归 中使用的 \ell_{2} 正则项相当于在 w 为高斯先验条件下,且此先验的精确度为 \lambda^{-1} 求最大后验估计。在这里,我们没有手工调参数lambda,而是让他作为一个变量,通过数据中估计得到。

为了得到一个全概率模型,输出 y 也被认为是关于 X w:的高斯分布。

p(y|X,w,\alpha) = \mathcal{N}(y|X w,\alpha)

Alpha 在这里也是作为一个变量,通过数据中估计得到.

贝叶斯回归有如下几个优点:

  • 它能根据已有的数据进行改变。
  • 它能在估计过程中引入正则项。

贝叶斯回归有如下缺点:

  • 它的推断过程是非常耗时的。

参考文献

  • 一个对于贝叶斯方法的很好的介绍 C. Bishop: Pattern Recognition and Machine learning
*详细介绍原创算法的一本书  `Bayesian learning for neural
networks` by Radford M. Neal

1.1.10.1. 贝叶斯岭回归

贝叶斯岭回归 利用概率模型估算了上述的回归问题,其先验参数  w 是由以下球面高斯公式得出的:

p(w|\lambda) =\mathcal{N}(w|0,\lambda^{-1}\bold{I_{p}})

先验参数 \alpha 和 \lambda 一般是服从 gamma 分布 <https://en.wikipedia.org/wiki/Gamma_distribution> , 这个分布与高斯成共轭先验关系。

得到的模型一般称为 贝叶斯岭回归, 并且这个与传统的 Ridge 非常相似。参数 w\alpha 和 \lambda 是在模型拟合的时候一起被估算出来的。 剩下的超参数就是 gamma 分布的先验了。 \alpha 和 \lambda 。 它们通常被选择为 没有信息量 。模型参数的估计一般利用 最大似然对数估计法 。

默认 \alpha_1 = \alpha_2 =  \lambda_1 = \lambda_2 = 10^{-6}.

../_images/sphx_glr_plot_bayesian_ridge_0011.png

贝叶斯岭回归用来解决回归问题:

>>>
>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True,
       fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
       normalize=False, tol=0.001, verbose=False)

在模型训练完成后,可以用来预测新值:

>>>
>>> reg.predict ([[1, 0.]])
array([ 0.50000013])

权值 w 可以被这样访问:

>>>
>>> reg.coef_
array([ 0.49999993,  0.49999993])

由于贝叶斯框架的缘故,权值与 普通最小二乘法 产生的不太一样。 但是,贝叶斯岭回归对病态问题(ill-posed)的鲁棒性要更好。

参考文献

1.1.10.2. 主动相关决策理论 - ARD

主动相关决策理论 和  贝叶斯岭回归 非常相似,

但是会导致一个更加稀疏的权重 w [1] [2]。 主动相关决策理论 提出了一个不同于 w 的先验假设。具体来说,就是弱化了高斯分布为球形的假设。 它采用的是关于 w 轴平行的椭圆高斯分布。

也就是说,每个权值 w_{i} 精确度来自于一个中心在0点,精度为 \lambda_{i} 的分布中采样得到的。

p(w|\lambda) = \mathcal{N}(w|0,A^{-1})

并且 diag \; (A) = \lambda = \{\lambda_{1},...,\lambda_{p}\}.

与 贝叶斯岭回归 不同, 每个 w_{i} 都有一个标准差 \lambda_i 。所有的关于方差的系数 \lambda_i 和由给定的超参数 \lambda_1 、 \lambda_2 由相同的gamma分布。

../_images/sphx_glr_plot_ard_0011.png

ARD 也被称为 稀疏贝叶斯学习 或 相关向量机 [3] [4].

参考文献:

[1]Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
[2]David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination
[3]Michael E. Tipping: Sparse Bayesian Learning and the Relevance Vector Machine
[4]Tristan Fletcher: Relevance Vector Machines explained

1.1.11. logistic 回归

logistic 回归,虽然名字里有 “回归” 二字,但实际上是解决分类问题的一类线性模型。在某些文献中,logistic 回归又被称作 logit regression(logit 回归),maximum-entropy classification(MaxEnt,最大熵分类),或 log-linear classifier(线性对数分类器)。该模型利用函数 logistic function 将单次试验(single trial)的输出转化并描述为概率。

scikit-learn 中 logistic 回归在 LogisticRegression 类中实现了二元(binary)、一对余(one-vs-rest)及多元 logistic 回归,并带有可选的 L1 和 L2 正则化。

若视为一优化问题,带 L2 罚项的二分类 logistic 回归要最小化以下代价函数(cost function):

\underset{w, c}{min\,} \frac{1}{2}w^T w + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1) .

类似地,带 L1 正则的 logistic 回归需要求解下式:

\underset{w, c}{min\,} \|w\|_1 + C \sum_{i=1}^n \log(\exp(- y_i (X_i^T w + c)) + 1) .

在 LogisticRegression 类中实现了这些求解器: “liblinear”, “newton-cg”, “lbfgs”, “sag” 和 “saga”。

“liblinear” 应用了坐标下降算法(Coordinate Descent, CD),并基于 scikit-learn 内附的高性能C++库 LIBLINEAR library 实现。不过CD算法训练的模型不是真正意义上的多分类模型,而是基于 “one-vs-rest” 思想分解了这个优化问题,为每个类别都训练了一个二元分类器。因为实现在底层使用该求解器的 LogisticRegression 实例对象表面上看是一个多元分类器。 sklearn.svm.l1_min_c 可以计算使用 L1 罚项时 C 的下界,以避免模型为空(即全部特征分量的权重为零)。

“lbfgs”, “sag” 和 “newton-cg” solvers (求解器)只支持 L2 罚项,对某些高维数据收敛更快。这些求解器的参数 `multi_class`设为 “multinomial” 即可训练一个真正的多元 logistic 回归 [5],其预测的概率比默认的 “one-vs-rest” 设定更为准确。

“sag” 求解器基于平均随机梯度下降算法(Stochastic Average Gradient descent) [6]。在大数据集上的表现更快,大数据集指样本量大且特征数多。

“saga” solver [7] 是 “sag” 的一类变体,它支持非平滑(non-smooth)的 L1 正则选项 penalty="l1" 。因此对于稀疏多元 logistic 回归 ,往往选用该求解器。

一言以蔽之,选用求解器可遵循如下规则:

Case Solver
L1正则 “liblinear” or “saga”
多元损失(multinomial loss) “lbfgs”, “sag”, “saga” or “newton-cg”
大数据集(n_samples “sag” or “saga”

“saga” 一般都是最佳的选择,但出于一些历史遗留原因默认的是 “liblinear”。

对于大数据集,还可以用 SGDClassifier ,并使用对数损失(’log’ loss)

与 liblinear 的区别:

当 fit_intercept=False 、回归得到的 coef_ 以及待预测的数据为零时, LogisticRegression 用 solver=liblinear及 LinearSVC 与直接使用外部liblinear库预测得分会有差异。这是因为, 对于 decision_function 为零的样本, LogisticRegression 和 LinearSVC 将预测为负类,而liblinear预测为正类。 注意,设定了 fit_intercept=False ,又有很多样本使得 decision_function 为零的模型,很可能会欠拟合,其表现往往比较差。建议您设置 fit_intercept=True并增大 intercept_scaling

Note

   

利用稀疏 logistic 回归(sparse logisitic regression)进行特征选择

带 L1 罚项的 logistic 回归 将得到稀疏模型(sparse model),相当于进行了特征选择(feature selection),详情参见  基于 L1 的特征选取 。

LogisticRegressionCV 对 logistic 回归 的实现内置了交叉验证(cross-validation),可以找出最优的参数 C。”newton-cg”, “sag”, “saga” 和 “lbfgs” 在高维数据上更快,因为采用了热启动(warm-starting)。在多分类设定下,若 multi_class 设为”ovr”,会为每类求一个最佳的C值;若 multi_class 设为”multinomial”,会通过交叉熵损失(cross-entropy loss)求出一个最佳 C 值。

参考文献:

[5]Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 4.3.4
[6]Mark Schmidt, Nicolas Le Roux, and Francis Bach: Minimizing Finite Sums with the Stochastic Average Gradient.
[7]Aaron Defazio, Francis Bach, Simon Lacoste-Julien: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives.

1.1.12. 随机梯度下降, SGD

随机梯度下降是拟合线性模型的一个简单而高效的方法。在样本量(和特征数)很大时尤为有用。 方法 partial_fit 可用于 online learning (在线学习)或基于 out-of-core learning (外存的学习)

SGDClassifier 和 SGDRegressor 分别用于拟合分类问题和回归问题的线性模型,可使用不同的(凸)损失函数,支持不同的罚项。 例如,设定 loss="log" ,则 SGDClassifier 拟合一个逻辑斯蒂回归模型,而 loss="hinge" 拟合线性支持向量机(SVM).

参考文献

1.1.13. Perceptron(感知器)

Perceptron 是适用于 large scale learning(大规模学习)的一种简单算法。默认地,

  • 不需要设置学习率(learning rate)。
  • 不需要正则化处理。
  • 仅使用错误样本更新模型。

最后一点表明使用合页损失(hinge loss)的感知机比SGD略快,所得模型更稀疏。

1.1.14. Passive Aggressive Algorithms(被动攻击算法)

被动攻击算法是大规模学习的一类算法。和感知机类似,它也不需要设置学习率,不过比感知机多出一个正则化参数 C 。

对于分类问题, PassiveAggressiveClassifier 可设定 loss='hinge' (PA-I)或 loss='squared_hinge' (PA-II)。对于回归问题, PassiveAggressiveRegressor 可设置 loss='epsilon_insensitive' (PA-I)或loss='squared_epsilon_insensitive' (PA-II).

参考文献:

1.1.15. 稳健回归(Robustness regression): 处理离群点(outliers)和模型错误

稳健回归(robust regression)特别适用于回归模型包含损坏数据(corrupt data)的情况,如离群点或模型中的错误。

../_images/sphx_glr_plot_theilsen_0011.png

1.1.15.1. 各种使用场景与相关概念

处理包含离群点的数据时牢记以下几点:

  • 离群值在X上还是在y方向上?

    离群值在y方向上 离群值在X方向上
    y_outliers X_outliers
  • 离群点的比例 vs. 错误的量级(amplitude)

    离群点的数量很重要,离群程度也同样重要。

稳健拟合(robust fitting)的一个重要概念是崩溃点(breakdown point),即拟合模型(仍准确预测)所能承受的离群值最大比例。

注意,在高维数据条件下( n_features 大),一般而言很难完成稳健拟合,很可能完全不起作用。

折中: 预测器的选择

Scikit-learn提供了三种稳健回归的预测器(estimator): RANSAC , Theil Sen 和 HuberRegressor

  • HuberRegressor 一般快于 RANSAC 和 Theil Sen , 除非样本数很大,即 n_samples >> n_features 。 这是因为 RANSAC 和 Theil Sen 都是基于数据的较小子集进行拟合。但使用默认参数时, Theil Sen 和 RANSAC 可能不如 HuberRegressor 鲁棒。
  • RANSAC 比 Theil Sen 更快,在样本数量上的伸缩性(适应性)更好。
  • RANSAC 能更好地处理y方向的大值离群点(通常情况下)。
  • Theil Sen 能更好地处理x方向中等大小的离群点,但在高维情况下无法保证这一特点。

实在决定不了的话,请使用 RANSAC

1.1.15.2. RANSAC: 随机抽样一致性算法(RANdom SAmple Consensus)

随机抽样一致性算法(RANdom SAmple Consensus, RANSAC)利用全体数据中局内点(inliers)的一个随机子集拟合模型。

RANSAC是一种非确定性算法,以一定概率输出一个可能的合理结果,依赖于迭代次数(参数 max_trials )。这种算法主要解决线性或非线性回归问题,在计算机视觉摄影测量领域尤为流行。

算法从全体样本输入中分出一个局内点集合,全体样本可能由于测量错误或对数据的假设错误而含有噪点、离群点。最终的模型仅从这个局内点集合中得出。

../_images/sphx_glr_plot_ransac_0011.png
1.1.15.2.1. 算法细节

每轮迭代执行以下步骤:

  1. 从原始数据中抽样 min_samples 数量的随机样本,检查数据是否合法(见 is_data_valid ).
  2. 用一个随机子集拟合模型( base_estimator.fit )。检查模型是否合法(见 is_model_valid )。
  3. 计算预测模型的残差(residual),将全体数据分成局内点和离群点( base_estimator.predict(X) - y )
  • 绝对残差小于 residual_threshold 的全体数据认为是局内点。
  1. 若局内点样本数最大,保存当前模型为最佳模型。以免当前模型离群点数量恰好相等(而出现未定义情况),规定仅当数值大于当前最值时认为是最佳模型。

上述步骤或者迭代到最大次数( max_trials ),或者某些终止条件满足时停下(见 stop_n_inliers 和 stop_score )。最终模型由之前确定的最佳模型的局内点样本(一致性集合,consensus set)预测。

函数 is_data_valid 和 is_model_valid 可以识别出随机样本子集中的退化组合(degenerate combinations)并予以丢弃(reject)。即便不需要考虑退化情况,也会使用 is_data_valid ,因为在拟合模型之前调用它能得到更高的计算性能。

参考文献:

1.1.15.3. Theil-Sen 预估器: 广义中值估计

TheilSenRegressor 估计器:使用中位数在多个维度推广,因此对多维离散值是有帮助,但问题是,随着维数的增加,估计器的准确性在迅速下降。准确性的丢失,导致在高维上的估计值比不上普通的最小二乘法。

1.1.15.3.1. 算法理论细节

TheilSenRegressor 媲美 Ordinary Least Squares (OLS) (普通最小二乘法(OLS))渐近效率和无偏估计。在对比 OLS, Theil-Sen 是一种非参数方法,这意味着它没有对底层数据的分布假设。由于 Theil-Sen 是基于中位数的估计,它是更适合的对损坏的数据。在单变量的设置,Theil-Sen 在一个简单的线性回归,这意味着它可以容忍任意损坏的数据高达 29.3% 的情况下,约 29.3% 的一个崩溃点。

../_images/sphx_glr_plot_theilsen_0011.png

在 scikit-learn 中 TheilSenRegressor 实施如下的学习推广到多元线性回归模型 [8] 利用空间中这是一个概括的中位数多维度 [9] 。

在时间复杂度和空间复杂度,根据 Theil-Sen 量表

\binom{n_{samples}}{n_{subsamples}}

这使得它不适用于大量样本和特征的问题。因此,可以选择一个亚群的大小来限制时间和空间复杂度,只考虑所有可能组合的随机子集。

参考文献:

[8]Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: Theil-Sen Estimators in a Multiple Linear Regression Model.
[9]
  1. Kärkkäinen and S. Äyrämö: On Computation of Spatial Median for Robust Data Mining.

1.1.15.4. Huber 回归

HuberRegressor 不同,因为它适用于 Ridge 损耗的样品被分类为离群值。如果这个样品的绝对误差小于某一阈值,样品就分为一层。 它不同于 TheilSenRegressor 和 RANSACRegressor 因为它无法忽略对离群值的影响,但对它们的权重较小。

../_images/sphx_glr_plot_huber_vs_ridge_001.png

这个 HuberRegressor 最小化损失函数是由

\underset{w, \sigma}{min\,} {\sum_{i=1}^n\left(\sigma + H_m\left(\frac{X_{i}w - y_{i}}{\sigma}\right)\sigma\right) + \alpha {||w||_2}^2}

其中

H_m(z) = \begin{cases}       z^2, & \text {if } |z| < \epsilon, \\       2\epsilon|z| - \epsilon^2, & \text{otherwise}\end{cases}

建议设置参数 epsilon 为 1.35 以实现 95% 统计效率。

1.1.15.5. 注意

HuberRegressor 与将损失设置为 huber 的 SGDRegressor 在以下方面的使用方式上是不同的。

  • HuberRegressor 是标度不变性的. 一旦设置了 epsilon , 通过不同的值向上或向下缩放 X 和 y ,就会跟以前一样对异常值产生同样的键壮性。相比 SGDRegressor 其中 epsilon 在 X 和 y 是缩放的时候必须再次设置。
  • HuberRegressor 应该更有效地使用在小样本数据,同时 SGDRegressor 需要在训练数据的次数来产生相同的键壮性。

参考文献:

  • Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale estimates, pg 172

另外,这个估计是不同于 R 实现的 Robust Regression (http://www.ats.ucla.edu/stat/r/dae/rreg.htm) 因为 R 不实现加权最小二乘实现每个样本上给出多少剩余的基础重量大于某一阈值。

1.1.16. 多项式回归:用基函数展开线性模型

机器学习中一种常见的模式,是使用线性模型训练数据的非线性函数。这种方法保持了一般快速的线性方法的性能,同时允许它们适应更广泛的数据范围。

例如,可以通过构造系数的 polynomial features 来扩展一个简单的线性回归。在标准线性回归的情况下,你可能有一个类似于二维数据的模型:

\hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2

如果我们想把抛物面拟合成数据而不是平面,我们可以结合二阶多项式的特征,使模型看起来像这样:

\hat{y}(w, x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2

(这有时候是令人惊讶的)观察,这还是 still a linear model : 看到这个,想象创造一个新的变量

z = [x_1, x_2, x_1 x_2, x_1^2, x_2^2]

有了这些数据的重新标记的数据,我们的问题就可以写了。

\hat{y}(w, x) = w_0 + w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5

我们看到,导致 polynomial regression 是线性模型中的同一类,我们认为以上(即模型是线性 ),可以用同样的方法解决。通过考虑在用这些基函数建立的高维空间中的线性拟合,该模型具有灵活性,可以适应更广泛的数据范围。

这里是一个例子,应用这个想法,一维数据,使用不同程度的多项式特征:

../_images/sphx_glr_plot_polynomial_interpolation_0011.png

这个图是使用 PolynomialFeatures 预创建。该预处理器将输入数据矩阵转换为给定度的新数据矩阵。它可以使用如下:

>>>
>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> poly = PolynomialFeatures(degree=2)
>>> poly.fit_transform(X)
array([[  1.,   0.,   1.,   0.,   0.,   1.],
       [  1.,   2.,   3.,   4.,   6.,   9.],
       [  1.,   4.,   5.,  16.,  20.,  25.]])

X 的特征已经从 [x_1, x_2] 转换到 [1, x_1, x_2, x_1^2, x_1 x_2, x_2^2], 并且现在可以用在任何线性模型。

这种预处理可以通过 Pipeline 工具进行简化。可以创建一个表示简单多项式回归的单个对象,并使用如下所示:

>>>
>>> from sklearn.preprocessing import PolynomialFeatures
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> model = Pipeline([('poly', PolynomialFeatures(degree=3)),
...                   ('linear', LinearRegression(fit_intercept=False))])
>>> # fit to an order-3 polynomial data
>>> x = np.arange(5)
>>> y = 3 - 2 * x + x ** 2 - x ** 3
>>> model = model.fit(x[:, np.newaxis], y)
>>> model.named_steps['linear'].coef_
array([ 3., -2.,  1., -1.])

利用多项式特征训练的线性模型能够准确地恢复输入多项式系数。

在某些情况下,没有必要包含任何单个特征的更高的幂,但只需要在大多数 d 不同的特征上相乘的所谓 interaction features(交互特征) 。这些可以与设定的 interaction_only=True 的 PolynomialFeatures 得到。

例如,当处理布尔属性, x_i^n = x_i 所有 n ,因此是无用的;但 x_i x_j 代表两布尔合取。这样我们就可以用线性分类器解决异或问题:

>>>
>>> from sklearn.linear_model import Perceptron
>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> y = X[:, 0] ^ X[:, 1]
>>> y
array([0, 1, 1, 0])
>>> X = PolynomialFeatures(interaction_only=True).fit_transform(X).astype(int)
>>> X
array([[1, 0, 0, 0],
       [1, 0, 1, 0],
       [1, 1, 0, 0],
       [1, 1, 1, 1]])
>>> clf = Perceptron(fit_intercept=False, max_iter=10, tol=None,
...                  shuffle=False).fit(X, y)

分类器的 “predictions” 是完美的:

>>>
>>> clf.predict(X)
array([0, 1, 1, 0])
>>> clf.score(X, y)
1.0



中文文档: http://sklearn.apachecn.org/cn/0.19.0/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/0.19.0/tutorial/basic/tutorial.html

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

有兴趣的大佬们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐