设计模式(三)结构型模式(二)适配器模式、桥梁模式
写在前面:你好,欢迎你的阅读!我热爱技术,热爱分享,热爱生活, 我始终相信:技术是开源的,知识是共享的!博客里面的内容大部分均为原创,是自己日常的学习记录和总结,便于自己在后面的时间里回顾,当然也是希望可以分享自己的知识。目前的内容几乎是基础知识和技术入门,如果你觉得还可以的话不妨关注一下,我们共同进步!除了分享博客之外,也喜欢看书,写一点日常杂文和心情分享,如果你感兴趣,也可以...
写在前面:
- 你好,欢迎你的阅读!
- 我热爱技术,热爱分享,热爱生活, 我始终相信:技术是开源的,知识是共享的!
- 博客里面的内容大部分均为原创,是自己日常的学习记录和总结,便于自己在后面的时间里回顾,当然也是希望可以分享自己的知识。目前的内容几乎是基础知识和技术入门,如果你觉得还可以的话不妨关注一下,我们共同进步!
- 除了分享博客之外,也喜欢看书,写一点日常杂文和心情分享,如果你感兴趣,也可以关注关注!
- 微信公众号:傲骄鹿先生
二、适配器模式(Adapter Pattern)
1、介绍
适配器模式:将一个接口转换成客户希望的另外一个接口,使接口不兼容的那些类可以一起工作。
2、模式原理
在适配器模式中,我们通过增加一个新的适配器类来解决接口不兼容的问题,使得原本没有任何关系的类可以协同工作。
根据适配器类与适配者类的关系不同,适配器模式可分为对象适配器和类适配器两种,在对象适配器模式中,适配器与适配者之间是关联关系;在类适配器模式中,适配器与适配者之间是继承(或实现)关系。
2.1、类的适配器模式
1、UML类图及组成
-
冲突:Target期待调用Request方法,而Adaptee并没有(这就是所谓的不兼容了)。
-
解决方案:为使Target能够使用Adaptee类里的SpecificRequest方法,故提供一个中间环节Adapter类(继承Adaptee & 实现Target接口),把Adaptee的API与Target的API衔接起来(适配)。
2、使用步骤
(1)创建Target接口
public interface Target {
//这是源类Adapteee没有的方法
public void Request();
}
(2)创建原类(Adaptee)
public class Adaptee {
public void SpecificRequest(){
}
}
(3)创建适配器类(Adapter)
//适配器Adapter继承自Adaptee,同时又实现了目标(Target)接口。
public class Adapter extends Adaptee implements Target {
//目标接口要求调用Request()这个方法名,但源类Adaptee没有方法Request()
//因此适配器补充上这个方法名
//但实际上Request()只是调用源类Adaptee的SpecificRequest()方法的内容
//所以适配器只是将SpecificRequest()方法作了一层封装,封装成Target可以调用的Request()而已
@Override
public void Request() {
this.SpecificRequest();
}
}
(4)定义具体使用目标类,并通过Adapter类调用所需要的方法来实现目标
public class AdapterPattern {
public static void main(String[] args){
Target mAdapter = new Adapter();
mAdapter.Request();
}
}
2.2、对象适配器模式
与类的适配器模式相同,对象的适配器模式也是把适配的类的API转换成为目标类的API。 与类的适配器模式不同的是,对象的适配器模式不是使用继承关系连接到Adaptee类,而是使用委派关系连接到Adaptee类。
1、UML类图及组成
-
冲突:Target期待调用Request方法,而Adaptee并没有(这就是所谓的不兼容了)。
-
解决方案:为使Target能够使用Adaptee类里的SpecificRequest方法,故提供一个中间环节Adapter类(包装了一个Adaptee的实例),把Adaptee的API与Target的API衔接起来(适配)。
Adapter与Adaptee是委派关系,这决定了适配器模式是对象的。
2、使用步骤
(1)创建Target接口
public interface Target {
//这是源类Adapteee没有的方法
public void Request();
}
(2)创建原类(Adaptee)
public class Adaptee {
public void SpecificRequest(){
}
}
(3)创建适配器类(Adapter)
class Adapter implements Target{
// 直接关联被适配类
private Adaptee adaptee;
// 可以通过构造函数传入具体需要适配的被适配类对象
public Adapter (Adaptee adaptee) {
this.adaptee = adaptee;
}
@Override
public void Request() {
// 这里是使用委托的方式完成特殊功能
this.adaptee.SpecificRequest();
}
}
(4)定义具体使用目标类,并通过Adapter类调用所需要的方法来实现目标
public class AdapterPattern {
public static void main(String[] args){
Target mAdapter = new Adapter(new Adaptee());
mAdapter.Request();
}
}
3. 优缺点
3.1 适配器模式
优点
-
更好的复用性:系统需要使用现有的类,而此类的接口不符合系统的需要。那么通过适配器模式就可以让这些功能得到更好的复用。
-
透明、简单:客户端可以调用同一接口,因而对客户端来说是透明的。这样做更简单 & 更直接
-
更好的扩展性:在实现适配器功能的时候,可以调用自己开发的功能,从而自然地扩展系统的功能。
-
解耦性:将目标类和适配者类解耦,通过引入一个适配器类重用现有的适配者类,而无需修改原有代码
-
符合开放-关闭原则:同一个适配器可以把适配者类和它的子类都适配到目标接口;可以为不同的目标接口实现不同的适配器,而不需要修改待适配类
缺点
-
过多的使用适配器,会让系统非常零乱,不易整体进行把握
3.2 类的适配器模式
优点
使用方便,代码简化:仅仅引入一个对象,并不需要额外的字段来引用Adaptee实例
缺点
高耦合,灵活性低:使用对象继承的方式,是静态的定义方式
3.3 对象的适配器模式
优点
灵活性高、低耦合:采用 “对象组合”的方式,是动态组合方式
缺点
使用复杂需要引入对象实例:特别是需要重新定义Adaptee行为时需要重新定义Adaptee的子类,并将适配器组合适配
4. 应用场景
4.1 适配器的使用场景
-
系统需要复用现有类,而该类的接口不符合系统的需求,可以使用适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作
-
多个组件功能类似,但接口不统一且可能会经常切换时,可使用适配器模式,使得客户端可以以统一的接口使用它们
4.2 类和对象适配器模式的使用场景
1、灵活使用时:选择对象的适配器模式
- 类适配器使用对象继承的方式,是静态的定义方式;而对象适配器使用对象组合的方式,是动态组合的方式。
2、需要同时配源类和其子类:选择对象的适配器
- 对于类适配器,由于适配器直接继承Adaptee,使得适配器不能和Adaptee的子类一起工作,因为继承是静态的关系,当适配器继承了Adaptee后,就不可能再去处理 Adaptee的子类了;
- 对于对象适配器,一个适配器可以把多种不同的源适配到同一个目标。即同一个适配器可以把源类和它的子类都适配到目标接口。因为对象适配器采用的是对象组合的关系,只要对象类型正确,是不是子类都无所谓。
3、需要重新定义Adaptee的部分行为:选择类适配器
- 对于类适配器,适配器可以重定义Adaptee的部分行为,相当于子类覆盖父类的部分实现方法。
- 对于对象适配器,要重定义Adaptee的行为比较困难,这种情况下,需要定义Adaptee的子类来实现重定义,然后让适配器组合子类。虽然重定义Adaptee的行为比较困难,但是想要增加一些新的行为则方便的很,而且新增加的行为可同时适用于所有的源。
4、仅仅希望使用方便时:选择类适配器
- 对于类适配器,仅仅引入了一个对象,并不需要额外的引用来间接得到Adaptee。
- 对于对象适配器,需要额外的引用来间接得到Adaptee。
三、桥梁模式(Bridge Patttern)
1、介绍
桥梁模式是对象的结构模式。又称为柄体(Handle and Body)模式或接口(Interface)模式。桥梁模式的用意是“将抽象化(Abstraction)与实现化(Implementation)脱耦,使得二者独立地变化”。
这句话有三个关键词,也就是抽象化、实现化和脱耦。理解这三个词所代表的概念是理解桥梁模式用意的关键。
抽象化
从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征,就是抽象化。例如苹果、香蕉、生梨、 桃子等,它们共同的特性就是水果。得出水果概念的过程,就是一个抽象化的过程。要抽象,就必须进行比较,没有比较就无法找到在本质上共同的部分。共同特征是指那些能把一类事物与他类事物区分开来的特征,这些具有区分作用的特征又称本质特征。因此抽取事物的共同特征就是抽取事物的本质特征,舍弃非本质的特征。 所以抽象化的过程也是一个裁剪的过程。在抽象时,同与不同,决定于从什么角度上来抽象。抽象的角度取决于分析问题的目的。
通常情况下,一组对象如果具有相同的特征,那么它们就可以通过一个共同的类来描述。如果一些类具有相同的特征,往往可以通过一个共同的抽象类来描述。
实现化
抽象化给出的具体实现,就是实现化。一个类的实例就是这个类的实例化,一个具体子类是它的抽象超类的实例化。
脱耦
所谓耦合,就是两个实体的行为的某种强关联。而将它们的强关联去掉,就是耦合的解脱,或称脱耦。在这里,脱耦是指将抽象化和实现化之间的耦合解脱开,或者说是将它们之间的强关联改换成弱关联。
所谓强关联,就是在编译时期已经确定的,无法在运行时期动态改变的关联;所谓弱关联,就是可以动态地确定并且可以在运行时期动态地改变的关联。显然,在Java语言中,继承关系是强关联,而聚合关系是弱关联。
将两个角色之间的继承关系改为聚合关系,就是将它们之间的强关联改换成为弱关联。因此,桥梁模式中的所谓脱耦,就是指在一个软件系统的抽象化和实现化之间使用聚合关系而不是继承关系,从而使两者可以相对独立地变化。这就是桥梁模式的用意。
2、模式原理
2.1、UML类图及组成
桥梁模式所涉及的角色有:
- 抽象化(Abstraction)角色:抽象化给出的定义,并保存一个对实现化对象的引用。
- 修正抽象化(RefinedAbstraction)角色:扩展抽象化角色,改变和修正父类对抽象化的定义。
- 实现化(Implementor)角色:这个角色给出实现化角色的接口,但不给出具体的实现。必须指出的是,这个接口不一定和抽象化角色的接口定义相同,实际上,这两个接口可以非常不一样。实现化角色应当只给出底层操作,而抽象化角色应当只给出基于底层操作的更高一层的操作。
- 具体实现化(ConcreteImplementor)角色:这个角色给出实现化角色接口的具体实现。
2.2、使用步骤
(1) 抽象化角色类,它声明了一个方法operation(),并给出了它的实现。这个实现是通过向实现化对象的委派(调用operationImpl()方法)实现的。
public abstract class Abstraction {
protected Implementor impl;
public Abstraction(Implementor impl){
this.impl = impl;
}
//示例方法
public void operation(){
impl.operationImpl();
}
}
(2)修正抽象化角色
public class RefinedAbstraction extends Abstraction {
public RefinedAbstraction(Implementor impl) {
super(impl);
}
//其他的操作方法
public void otherOperation(){
}
}
(3) 实现化角色
public abstract class Implementor {
/**
* 示例方法,实现抽象部分需要的某些具体功能
*/
public abstract void operationImpl();
}
(4) 具体实现化角色
public class ConcreteImplementorA extends Implementor {
@Override
public void operationImpl() {
//具体操作
}
}
public class ConcreteImplementorB extends Implementor {
@Override
public void operationImpl() {
//具体操作
}
}
一般而言,实现化角色中的每个方法都应当有一个抽象化角色中的某一个方法与之对应,但是反过来则不一定。换言之,抽象化角色的接口比实现化角色的接口宽。抽象化角色除了提供与实现化角色相关的方法之外,还有可能提供其他的方法;而实现化角色则往往仅为实现抽象化角色的相关行为而存在。
2.3、通过业务场景理解
考虑这样一个实际的业务功能:发送提示消息。基本上所有带业务流程处理的系统都会有这样的功能,比如OA上有尚未处理完毕的文件,需要发送一条消息提示他。从业务上看,消息又分成普通消息、加急消息和特急消息多种,不同的消息类型,业务功能处理是不一样的,比如加急消息是在消息上添加加急,而特急消息除了添加特急外,还会做一条催促的记录,多久不完成会继续催促;从发送消息的手段上看,又有系统内短消息、手机短信息、邮件等。
1、实现发送普通消息
先考虑实现一个简单点的版本,比如,消息只是实现发送普通消息,发送的方式只实现系统内短消息和邮件。
2、实现发送加急消息
发送加急消息同样有两种方式,系统内短消息和邮件方式。但是加急消息的实现不同于普通消息,加急消息会自动在消息上添加加急,然后在再发送消息;另外加急消息会提供监控的方法,让客户端可以随时通过这个方法来了解对于加急消息的处理进度。比如,相应的人员是否接收到这个信息,相应的处理工作是否已经展开。因此加急消息需要扩展出一个新的接口,除了基本的发送消息的功能,还需要添加监控功能。
3、实现发送特急消息
特急消息不需要查看处理进程,只有没有完成,就直接催促,也就是说,对于特急消息,在普通消息的处理基础上,需要添加催促的功能。
观察上面的系统结构图,会发现一个很明显的问题,那就是通过这种继承的方式来扩展消息处理,会非常不方便。实现加急消息处理的时候,必须实现系统内短消息和邮件两种处理方式,因为业务处理可能不同,在实现特急消息处理的时候,又必须实现系统内短信息和邮件两种处理方式。这意味着,以后每次扩展一下消息处理,都必须要实现这两种处理方式,这还不算完,如果要添加新的实现方式呢?
4、添加发送手机消息的处理方式
如果要添加一种新的发送消息的方式,是需要在每一种抽象的具体实现中,都添加发送手机消息的处理的。也就是说,发送普通消息、加急消息和特急消息的处理,都可以通过手机来发送。
采用通过继承来扩展的实现方式,有个明显的缺点,扩展消息的种类不太容易。不同种类的消息具有不同的业务,也就是有不同的实现,在这种情况下,每一种类的消息,需要实现所有不同的消息发送方式。更可怕的是,如果要新加入一种消息的发送方式,那么会要求所有的消息种类都有加入这种新的发送方式的实现。
5、使用桥梁模式来解决问题
根据业务的功能要求,业务的变化具有两个维度,一个维度是抽象的消息,包括普通消息、加急消息和特急消息,这几个抽象的消息本身就具有一定的关系,加急消息和特急消息会扩展普通消息;另一个维度是在具体的消息发送方式上,包括系统内短消息、邮件和手机短消息,这几个方式是平等的,可被切换的方式。
现在出现问题的根本原因,就在于消息的抽象和实现是混杂在一起的,这就导致了一个纬度的变化会引起另一个纬度进行相应的变化,从而使得程序扩展起来非常困难。
要想解决这个问题,就必须把这两个纬度分开,也就是将抽象部分和实现部分分开,让它们相互独立,这样就可以实现独立的变化,使扩展变得简单。抽象部分就是各个消息的类型所对应的功能,而实现部分就是各种发送消息的方式。按照桥梁模式的结构,给抽象部分和实现部分分别定义接口,然后分别实现它们就可以了。
6、代码实现
抽象消息类:
public abstract class AbstractMessage {
//持有一个实现部分的对象
MessageImplementor impl;
/**
* 构造方法,传入实现部分的对象
* @param impl 实现部分的对象
*/
public AbstractMessage(MessageImplementor impl){
this.impl = impl;
}
/**
* 发送消息,委派给实现部分的方法
* @param message 要发送消息的内容
* @param toUser 消息的接受者
*/
public void sendMessage(String message , String toUser){
this.impl.send(message, toUser);
}
}
普通消息类 :
public class CommonMessage extends AbstractMessage {
public CommonMessage(MessageImplementor impl) {
super(impl);
}
@Override
public void sendMessage(String message, String toUser) {
// 对于普通消息,直接调用父类方法,发送消息即可
super.sendMessage(message, toUser);
}
}
加急消息类 :
public class UrgencyMessage extends AbstractMessage {
public UrgencyMessage(MessageImplementor impl) {
super(impl);
}
@Override
public void sendMessage(String message, String toUser) {
message = "加急:" + message;
super.sendMessage(message, toUser);
}
/**
* 扩展自己的新功能,监控某消息的处理状态
* @param messageId 被监控的消息编号
* @return 监控到的消息的处理状态
*/
public Object watch(String messageId) {
// 根据消息id获取消息的状态,组织成监控的数据对象,然后返回
return null;
}
}
实现发送消息的统一接口:
public interface MessageImplementor {
/**
* 发送消息
* @param message 要发送消息的内容
* @param toUser 消息的接受者
*/
public void send(String message , String toUser);
}
系统内短消息的实现类 :
public class MessageSMS implements MessageImplementor {
@Override
public void send(String message, String toUser) {
System.out.println("使用系统内短消息的方法,发送消息'"+message+"'给"+toUser);
}
}
邮件短消息的实现类:
public class MessageEmail implements MessageImplementor {
@Override
public void send(String message, String toUser) {
System.out.println("使用邮件短消息的方法,发送消息'"+message+"'给"+toUser);
}
}
客户端类 :
public class Client {
public static void main(String[] args) {
//创建具体的实现对象
MessageImplementor impl = new MessageSMS();
//创建普通消息对象
AbstractMessage message = new CommonMessage(impl);
message.sendMessage("加班申请速批","李总");
//将实现方式切换成邮件,再次发送
impl = new MessageEmail();
//创建加急消息对象
message = new UrgencyMessage(impl);
message.sendMessage("加班申请速批","李总");
}
}
观察上面的例子会发现,采用桥梁模式来实现,抽象部分和实现部分分离开了,可以相互独立的变化,而不会相互影响。因此在抽象部分添加新的消息处理(特急消息),对发送消息的实现部分是没有影响的;反过来增加发送消息的方式(手机短消息),对消息处理部分也是没有影响的。
3、优点和缺点
优点
-
分离抽象接口及其实现部分。桥接模式使用“对象间的关联关系”解耦了抽象和实现之间固有的绑定关系,使得抽象和实现可以沿着各自的维度来变化。所谓抽象和实现沿着各自维度的变化,也就是说抽象和实现不再在同一个继承层次结构中,而是“子类化”它们,使它们各自都具有自己的子类,以便任何组合子类,从而获得多维度组合对象。
-
在很多情况下,桥接模式可以取代多层继承方案,多层继承方案违背了“单一职责原则”,复用性较差,且类的个数非常多,桥接模式是比多层继承方案更好的解决方法,它极大减少了子类的个数。
-
桥接模式提高了系统的可扩展性,在两个变化维度中任意扩展一个维度,都不需要修改原有系统,符合“开闭原则”。
缺点
-
桥接模式的使用会增加系统的理解与设计难度,由于关联关系建立在抽象层,要求开发者一开始就针对抽象层进行设计与编程。
-
桥接模式要求正确识别出系统中两个独立变化的维度,因此其使用范围具有一定的局限性,如何正确识别两个独立维度也需要一定的经验积累。
4、适用环境
-
如果一个系统需要在抽象化和具体化之间增加更多的灵活性,避免在两个层次之间建立静态的继承关系,通过桥接模式可以使它们在抽象层建立一个关联关系。
-
“抽象部分”和“实现部分”可以以继承的方式独立扩展而互不影响,在程序运行时可以动态将一个抽象化子类的对象和一个实现化子类的对象进行组合,即系统需要对抽象化角色和实现化角色进行动态耦合。
-
一个类存在两个(或多个)独立变化的维度,且这两个(或多个)维度都需要独立进行扩展。
-
对于那些不希望使用继承或因为多层继承导致系统类的个数急剧增加的系统,桥接模式尤为适用。
5、桥梁模式在Java中的使用
桥梁模式在Java应用中的一个非常典型的例子就是JDBC驱动器。JDBC为所有的关系型数据库提供一个通用的界面。一个应用系统动态地选择一个合适的驱动器,然后通过驱动器向数据库引擎发出指令。这个过程就是将抽象角色的行为委派给实现角色的过程。
抽象角色可以针对任何数据库引擎发出查询指令,因为抽象角色并不直接与数据库引擎打交道,JDBC驱动器负责这个底层的工作。由于JDBC驱动器的存在,应用系统可以不依赖于数据库引擎的细节而独立地演化;同时数据库引擎也可以独立于应用系统的细节而独立的演化。两个独立的等级结构如下图所示,左边是JDBC API的等级结构,右边是JDBC驱动器的等级结构。应用程序是建立在JDBC API的基础之上的。
应用系统作为一个等级结构,与JDBC驱动器这个等级结构是相对独立的,它们之间没有静态的强关联。应用系统通过委派与JDBC驱动器相互作用,这是一个桥梁模式的例子。
JDBC的这种架构,把抽象部分和具体部分分离开来,从而使得抽象部分和具体部分都可以独立地扩展。对于应用程序而言,只要选用不同的驱动,就可以让程序操作不同的数据库,而无需更改应用程序,从而实现在不同的数据库上移植;对于驱动程序而言,为数据库实现不同的驱动程序,并不会影响应用程序。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)