矩阵按列按行归一化到L2范数的原理和最精简Matlab代码
在模式识别和机器学习的数据预处理过程中,对数据集按行或者按列进行L2范数归一化是一种常见的归一化方式,因此本文将介绍对向量进行L2范数归一化的原理和方法,并给出相关的Matlab源代码,供后学者作为基础知识参考使用。 由此,我们可以很块的写出最简单的matlab源代码如下: 首先按行归一化:% ExamplesA=[3 4;5 1
由此,我们可以很块的写出最简单的matlab源代码如下:
首先按行归一化:
% Examples
A=[3 4;5 12];
[m n] = size(A);
% normalize each row to unit
for i = 1:m
A(i,:)=A(i,:)/norm(A(i,:));
end
按列归一化:
% normalize each column to unit
A=[3 4;5 12];
for i = 1:n
A(:,i)=A(:,i)/norm(A(:,i));
end
然而,上述代码最能实现功能,但并不是最优的,它只是一种对该过程的最佳理解代码。在Matlab中,for循环是一件非常费时间的结构,因此我们在代码中应该尽量少用for循环。由此,我们可以用repmat命令得到另一种更加简洁更加快速的代码,只是这种代码对于初学者理解起来比较费劲。可以看错是自己水平的一种进阶吧。
% normalize each row to unit
A = A./repmat(sqrt(sum(A.^2,2)),1,size(A,2));
% normalize each column to unit
A = A./repmat(sqrt(sum(A.^2,1)),size(A,1),1);
本文转自:http://blog.sciencenet.cn/blog-810210-655011.html
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)