ubuntu14.04+cuda8.0+cudnn6.0+mxnet源码安装
mxnet的github地址:https://github.com/apache/incubator-mxnetmxnet的gpu版的源码安装(https://mxnet.incubator.apache.org/install/index.html):1. install cuda8.0和cudnn6.0(http://blog.csdn.net/disen10/article/deta
mxnet的github地址:https://github.com/apache/incubator-mxnet
mxnet的gpu版的源码安装(https://mxnet.incubator.apache.org/install/index.html):
1. install cuda8.0和cudnn6.0(http://blog.csdn.net/disen10/article/details/79279969)
2. Build the MXNet core shared library
Step 1 Install build tools and git.
Step 2 Install OpenBLAS.
MXNet uses BLAS and LAPACK libraries for accelerated numerical computations on CPU machine. There are several flavors of BLAS/LAPACK libraries - OpenBLAS, ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.
Step 3 Install OpenCV.
MXNet uses OpenCV for efficient image loading and augmentation operations.
Step 4 Download MXNet sources and build MXNet core shared library.
Note - USE_OPENCV, USE_BLAS, USE_CUDA, USE_CUDA_PATH AND USE_CUDNN are make file flags to set compilation options to use OpenCV, OpenBLAS, CUDA and cuDNN libraries. You can explore and use more compilation options in make/config.mk
. Make sure to set USE_CUDA_PATH to right CUDA installation path. In most cases it is - /usr/local/cuda.
3. Install the MXNet Python binding
Step 1 Install prerequisites - python, setup-tools, python-pip and numpy.
Step 2 Install the MXNet Python binding.
Note that the -e
flag is optional. It is equivalent to --editable
and means that if you edit the source files, these changes will be reflected in the package installed.
Step 3 Install Graphviz. (Optional, needed for graph visualization using mxnet.viz
package).
Step 4 Validate the installation by running simple MXNet code described here.
4. Validate MXNet Installation
Start the python terminal.
Run a short MXNet python program to create a 2X3 matrix of ones a on a GPU, multiply each element in the matrix by 2 followed by adding 1. We expect the output to be a 2X3 matrix with all elements being 3. We use mx.gpu(), to set MXNet context to be GPUs.
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)