The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
#include <iostream>
#include <string>
using namespace std;
bool prim(int a)
{
if (a == 1)
return false;
for (int i = 2; i*i <= a; i++)
{
if (a%i == 0)
return false;
}
return true;
}
bool tr_prim(int a)
{
int num = a;
int count = 0;
int tmp[10] = { 0 };
while (a)
{
if (!prim(a))
return false;
count++;
tmp[count] = a % 10;
a /= 10;
}
for (int i = count; i > 1; i--)
{
num = num - tmp[i] * pow(10, i - 1);
if (!prim(num))
return false;
}
return true;
}
int main()
{
int sum = 0;
for (int i = 10; i <= 1000000; i++)
{
if (tr_prim(i))
{
//cout << i << endl;
sum += i;
}
}
cout << sum << endl;
system("pause");
return 0;
所有评论(0)