数据应用建设路径
银行应利用在传统数据仓库技术的积累,大力推进大数据、云计算等开源技术的应用,构建数据处理能力与数据应用能力相匹配的基于大数据的云服务型数据基础平台。加强专业化人才队伍建设,以首席数据官为带头人,数据科学家为分析技术核心,建立数据分析师与数据管理员的专业化团队,与业务部门多样化的数据分析与应用人员,共同组成分工协作的数据人才队伍。满足数据可视化要求,建立有数据质量保障的能够进行多维查询与分析的数据可
基于数据应用的建设策略与方向,银行应在迭代建设过程中搭建具有快速计算、海量存储及动态可视化能力的数据平台。通过持续的、高质量的数据采集与集成,运用数据分析及挖掘算法,提供专业的数据应用服务,促进数据应用水平不断提升。同时银行应注重人才与文化建设,更好地应对市场变化及商业竞争。
- 数据应用的基础建设
搭建数据基础平台,是进行大数据采集、集成、共享及应用的基础。银行应利用在传统数据仓库技术的积累,大力推进大数据、云计算等开源技术的应用,构建数据处理能力与数据应用能力相匹配的基于大数据的云服务型数据基础平台。
采集与集成数据资源,银行处于数据驱动业务模式的转型期,应积极获取一二三方的数据,扩充行内的数据宽度。银行应规范行内信息系统的建设与业务操作规范,提升行内第一方数据的质量;开展上下游生态圈合作,扩展行内的第二方数据;通过爬取、购买、交换等方式,补充行内的第三方数据。对于采集到的多方数据需要通过构建统一的企业数据模型进行整合,形成行内的数据资产地图,降低数据理解的难度,有效支撑业务部门开展数据应用。
- 数据应用的内容建设
满足数据可视化要求,建立有数据质量保障的能够进行多维查询与分析的数据可视化平台与工具,减少数据分析人员因找数据,验数据,协调解决数据质量问题产生的大量工作。
建立数据分析实验室,集中数据分析骨干,基于内容的检索和相似度搜索、概化和多维分析、分类和预测分析等方法,加强对文本数据、图形数据、音频数据以及超文本数据等复杂数据进行挖掘。
加强算法应用改进,结合实际应用案例,引入国内外机器学习等先进算法并提升算法的性能与稳定性,加强对挖掘结果的有效性评估,逐步将大数据资源转化为商业洞察,提升自动化业务流程,增强差异化产品与服务的核心能力。
增强应用服务能力,基于银行风险管理、业务运营、内部控制等多个应用领域,为业务部门提出场景化的应用解决方案。发掘数据应用需求,探索新的数据应用领域,拓展数据应用深度,推动数据资产价值实现。
- 数据人才队伍与文化建设
加强专业化人才队伍建设,以首席数据官为带头人,数据科学家为分析技术核心,建立数据分析师与数据管理员的专业化团队,与业务部门多样化的数据分析与应用人员,共同组成分工协作的数据人才队伍。
推动数据文化建设,银行应通过培训及绩效激励相结合方式,大力推广成功数据应用经验以及先进数据应用理念,形成从总行到分支行以数据发现问题并解决问题,善用数据并用好数据的数据文化。
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)