人工神经网络实现鸢尾花分类(一)

人工神经网络实现鸢尾花分类(二)

人工神经网络实现鸢尾花分类(三)

人工神经网络实现鸢尾花分类(四)

人工神经网络实现鸢尾花分类(五)

本文主要写人工神经网络实现鸢尾花分类代码部分

使用的是Kaggle: Your Machine Learning and Data Science Community在线编译器

本代码属于自己造螺丝类,写的很细,没用神经网络不必要的函数即相关模块。相对较为复杂。

下篇文章会写道利用模块和自带函数实现鸢尾花分类。相对简单很多。

目录

本文主要写人工神经网络实现鸢尾花分类代码部分

鸢尾花数据集(Iris)

 主要分为六大块

导入所需模块

准备数据

数据集读入

数据集乱序

生成训练集和测试集(即 x_train / y_train)

配成 (输入特征,标签) 对,每次读入一小撮(batch)

搭建网络

定义神经网路中所有可训练参数

参数优化

嵌套循环迭代,with结构更新参数,显示当前loss

测试效果

acc / loss可视化

输出结果


鸢尾花数据集(Iris)

 主要分为六大块

导入包-->准备数据-->搭建网络-->参数优化-->测试效果-->可视化

导入所需模块

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

准备数据

数据集读入

# 导入数据,分别为读入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

数据集乱序

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

生成训练集和测试集(即 x_train / y_train)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

配成 (输入特征,标签) 对,每次读入一小撮(batch)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

搭建网络

定义神经网路中所有可训练参数

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1))
 
lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc准确率记录在此列表中,为后续画acc曲线提供数据
epoch = 1000  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

参数优化

嵌套循环迭代,with结构更新参数,显示当前loss

# 训练部分 y = w*x+ b ,利用(x,y)反推·w,b
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算   随机取w,b y=w*x+b的预测y值
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy 实际y值
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2) 预测y值与实际y值的偏差
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1]) #利用loss计算偏差
 
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad   利用偏差修正w,b
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新
 
    # 每个epoch,打印loss信息
    #print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

测试效果

计算当前参数前向传播后的准确率,显示当前acc

 # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1 
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)

acc / loss可视化

plt.figure(figsize=(10, 10))
plt.title('Loss and Acc')
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss and Acc')  # y轴变量名称
plt.yticks([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1])
# 绘制 loss 曲线
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
# 绘制 Accuracy 曲线
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

输出结果


 

Logo

瓜分20万奖金 获得内推名额 丰厚实物奖励 易参与易上手

更多推荐