FrameBuffer 在Android中并不像在其它GUI那样直观,抽象的层次比较多,加上GUI的更新是通过OpenGLES来做的。所以让人很难搞清GUI更新的整个流程,最近要准备一个讲稿,所以花了一些去研究,这里做点笔记供大家参考,源代码是基于高通平台的,这些代码在网上都可以下载。

FrameBuffer相关的组件

1.SurfaceFlinger是一个服务,主要是负责合成各窗口的Surface,然后通过OpenGLES显示到FrameBuffer上。SurfaceFlinger本身比较重要而且比较复杂,以后专门写一篇吧。

2.DisplayHardware是对显示设备的抽象,包括FrameBuffer和Overlay。它加载FrameBuffer和Overlay插件,并初始化OpenGLES:

 mNativeWindow = new FramebufferNativeWindow( ) ; framebuffer_device_t const * fbDev = mNativeWindow-> getDevice( ) ; if ( hw_get_module( OVERLAY_HARDWARE_MODULE_ID, & module) == 0 ) { overlay_control_open( module, & mOverlayEngine) ; } surface = eglCreateWindowSurface( display, config, mNativeWindow.get ( ) , NULL) ; eglMakeCurrent( display, surface, surface, context) ; 

3.FramebufferNativeWindow 是framebuffer 的抽象,它负责加载libgralloc,并打开framebuffer设备。FramebufferNativeWindow并不直接使用 framebuffer,而是自己创建了两个Buffer:

queueBuffer负责显示一个Buffer到屏幕上,它调用fb->post去显示。
dequeueBuffer获取一个空闲的Buffer,用来在后台绘制。

这两个函数由eglSwapBuffers调过来,调到

egl_window_surface_v2_t:: swapBuffers : nativeWindow-> queueBuffer( nativeWindow, buffer) ; nativeWindow-> dequeueBuffer( nativeWindow, & buffer) ; 

4.msm7k/liboverlay是Overlay的实现,与其它平台不同的是,高通平台上的Overlay并不是提供一个framebuffer设备,而通过fb0的ioctl来实现的,ioctl分为两类操作:

OverlayControlChannel用于设置参数,比如设置Overlay的位置,宽度和高度:

bool OverlayControlChannel:: setPosition ( int x, int y, uint32_t w, uint32_t h) { ov.dst_rect .x = x; ov.dst_rect .y = y; ov.dst_rect .w = w; ov.dst_rect .h = h;   ioctl( mFD, MSMFB_OVERLAY_SET, & ov) ; } 

OverlayDataChannel用于显示Overlay,其中最重要的函数就是queueBuffer:
bool OverlayDataChannel::queueBuffer(uint32_t offset) {

mOvData.data .offset = offset;   ioctl( mFD, MSMFB_OVERLAY_PLAY, odPtr) ) } 

5.msm7k/libgralloc 是显示缓存的抽象,包括framebuffer和普通Surface的Buffer。framebuffer只是/dev/graphic/fb0的包装,Surface的Buffer则是对/dev/pmem、ashmem和GPU内存(msm_hw3dm)的包装,它的目标主要是方便硬件加速,因为 DMA传输使用物理地址,要求内存在物理地址上连续。

6.msm7k/libcopybit这是2D加速库,主要负责Surface的拉伸、旋转和合成等操作。它有两种实现方式:
copybit.cpp: 基于fb0的ioctl(MSMFB_BLIT)的实现。
copybit_c2d.cpp: 基于kgsl的实现,只是对libC2D2.so的包装,libC2D2.so应该是不开源的。

7.pmem
misc/pmem.c: 对物理内存的管理,算法和用户空间的接口。
board-msm7x27.c定义了物理内存的缺省大小:

#define MSM_PMEM_MDP_SIZE 0x1B76000 #define MSM_PMEM_ADSP_SIZE 0xB71000 #define MSM_PMEM_AUDIO_SIZE 0x5B000 #define MSM_FB_SIZE 0x177000 #define MSM_GPU_PHYS_SIZE SZ_2M #define PMEM_KERNEL_EBI1_SIZE 0x1C000 

msm_msm7x2x_allocate_memory_regions分配几大块内存用于给pmem做二次分配。

8.KGSL
Kernel Graphics System Layer (KGSL),3D图形加速驱动程序,源代码drivers/gpu/msm目录下,它是对GPU的包装,给OpenGLES 2.0提供抽象的接口。

9.msm_hw3dm
这个我在内核中没有找到相关代码。

10.msm_fb
msm_fb.c: framebuffer, overlay和blit的用户接口。
mdp_dma.c: 对具体显示设备的包装,提供两种framebuffer更新的方式:

  • mdp_refresh_screen: 定时更新。
  • mdp_dma_pan_update: 通过pan display主动更新。

mdp_dma_lcdc.c:针对LCD实现的显示设备,mdp_lcdc_update用更新framebuffer。


注意 一个命令:

抓FB0 显示画面
cat /dev/graphics/fb0 >/sdcard/fb0
ffmpeg -vcodec rawvideo -f rawvideo -pix_fmt rgb565 -s 800x600 -i fb0 -f image2 -vcodec png image-fb0%d.png

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐