【实验记录】Fashion-Mnist分类实验记录
使用深度学习解决Fashion-Mnist分类问题• Problem Descriptionhttps://github.com/zalandoresearch/fashion-mnist• Solution Design先使用全连接神经网络• Data Preparationmatlab打开数据集:https://blog.csdn.net/tracer9/article/de...
Fashion-Mnist实验记录
使用深度学习解决Fashion-Mnist分类问题
• Problem Description
https://github.com/zalandoresearch/fashion-mnist
• Solution Design
先使用全连接神经网络
• Data Preparation
matlab打开数据集:https://blog.csdn.net/tracer9/article/details/51253604
数据集数量:60000+10000数据集内容: Zalando’s article images单个样本大小:28*28
• Network Structure, Network Training, Experimental Results
训练1(error)
max_iter = 600mini_batch = 40alpha = 0.05data:28x28x8000layer_size: input+56(0);270;90;30;10w: randn()*sqrt(6/(n{l}+n{l+1}))sigmoidJ: 0.5/mini_batch*Σ(a{L}-y)
本来最后是有:
591/600 epochs: J=0.0431 Acc=0.9500
592/600 epochs: J=0.0358 Acc=0.9500
593/600 epochs: J=0.0304 Acc=1.0000
594/600 epochs: J=0.0425 Acc=0.9250
595/600 epochs: J=0.0374 Acc=0.9500
596/600 epochs: J=0.0407 Acc=0.9500
597/600 epochs: J=0.0818 Acc=0.8750
598/600 epochs: J=0.0162 Acc=0.9750
599/600 epochs: J=0.0327 Acc=0.9500
600/600 epochs: J=0.0695 Acc=0.9250
但是很奇怪的是:
Accuracy on training dataset is 1.150000%
Accuracy on testing dataset is 3.900000%
不知道什么情况,可能是测试逻辑不对?
哦。。。原来直接复制了上一次代码的某句话导致错误。。。
% prepare labels
% [~,ind_label]=max(trainLabels(:,ind((k-1)*mini_batch+1:min(k*mini_batch,train_size))));
% prepare targets
% y=audio(:,ind_label);
y = trainLabels(:,ind((k-1)*mini_batch+1:min(k*mini_batch,train_size)));
训练2(84.50%)
…参数同训练1
修改错误,重新训练
Accuracy on training dataset is 92.287500%
Accuracy on testing dataset is 84.500000%
训练3(86.60%)
train_data: 20000test_data: 5000…其他参数同训练1
只是加大了数据量
Accuracy on training dataset is 94.825000%
Accuracy on testing dataset is 86.600000%
训练4(88.75%)
train_data: 60000(all in)test_data: 10000max_iter = 487(emmm半夜要停电)…其他参数同训练1
同样只是加大了数据量
几乎没有变化
Accuracy on training dataset is 96.681667%
Accuracy on testing dataset is 88.750000%
训练5(fail)
train_data: 60000(all in)test_data: 10000max_iter = 600relulayer_size: input+56(0);401;191;92;44;21;10…其他参数同训练1
Accuracy on training dataset is 10.000000%
Accuracy on testing dataset is 10.000000%
训练6
train_data: 60000(all in)test_data: 10000max_iter = 600sigm…其他参数同训练1
Accuracy on training dataset is 97.621667%
Accuracy on testing dataset is 88.460000%
• Conclusion
• Implement Code
• References (at least two references)
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)