💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

麻雀搜索算法是一种基于群体智能的算法,它的基本思想是将问题抽象为一个个体的适应度函数,在群体的协作下逐步逼近最优解。在图像分割问题中,麻雀搜索算法可以被用作优化KMeans算法的初始化和结果后处理,从而对图像进行更精确的分割。

具体实现步骤如下:

1. 对输入图像进行预处理,例如缩小或降采样,以节省计算资源和时间。

2. 初始化麻雀种群。将像素点的RGB值作为特征向量,随机生成若干个麻雀作为初始种群。

3. 对每个麻雀计算适应度函数。在适应度函数中,将一个麻雀看作是KMeans算法的一个聚类中心,将每个像素点归类到最近的聚类中心上。

4. 计算种群中的个体适应度值的最大值和最小值,以及每个个体的适应度占比。

5. 根据适应度占比确定麻雀之间的竞争关系,并随机选择一部分优胜的麻雀生成新的种群。

6. 对新生成的种群中的每个麻雀进行变异和交叉操作,并对变异和交叉后的个体计算适应度函数。

7. 轮流执行步骤4-6,直到达到预定的迭代次数或者收敛阈值。

8. 使用优化后的聚类中心进行最终的图像分割。

通过将麻雀搜索和KMeans算法相结合,可以提高KMeans算法的收敛速度和分割效果。但是,需要注意的是,在使用麻雀搜索算法进行优化的同时,也需要注意避免出现过度拟合和局部最优解等问题。图片可以换成自己的即可。

📚2 运行结果

部分代码:

%_________________________________________________________________________%
% 麻雀优化算法             %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)

ST = 0.6;%预警值
PD = 0.7;%发现者的比列,剩下的是加入者
SD = 0.2;%意识到有危险麻雀的比重

PDNumber = pop*PD; %发现者数量
SDNumber = pop - pop*PD;%意识到有危险麻雀数量
if(max(size(ub)) == 1)
   ub = ub.*ones(1,dim);
   lb = lb.*ones(1,dim);  
end

%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
   fitness(i) =  fobj(X(i,:));
end
 [fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:pop
    X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iter
    
    BestF = fitness(1);
    WorstF = fitness(end);

    
    R2 = rand(1);
   for j = 1:PDNumber
      if(R2<ST)
          X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));
      else
          X_new(j,:) = X(j,:) + randn()*ones(1,dim);
      end     
   end
   for j = PDNumber+1:pop
%        if(j>(pop/2))
        if(j>(pop - PDNumber)/2 + PDNumber)
          X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);
       else
          %产生-1,1的随机数
          A = ones(1,dim);
          for a = 1:dim
            if(rand()>0.5)
                A(a) = -1;
            end
          end 
          AA = A'*inv(A*A');     
          X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';
       end
   end
   Temp = randperm(pop);
   SDchooseIndex = Temp(1:SDNumber); 
   for j = 1:SDNumber
       if(fitness(SDchooseIndex(j))>BestF)
           X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));
       elseif(fitness(SDchooseIndex(j))== BestF)
           K = 2*rand() -1;
           X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
       end
   end
   %边界控制
   for j = 1:pop
       for a = 1: dim
           if(X_new(j,a)>ub)
               X_new(j,a) =ub(a);
           end
           if(X_new(j,a)<lb)
               X_new(j,a) =lb(a);
           end
       end
   end 
   %更新位置
   for j=1:pop
    fitness_new(j) = fobj(X_new(j,:));
   end
   for j = 1:pop
    if(fitness_new(j) < GBestF)
       GBestF = fitness_new(j);
        GBestX = X_new(j,:);   
    end
   end
   X = X_new;
   fitness = fitness_new;
    %排序更新
   [fitness, index]= sort(fitness);%排序
   BestF = fitness(1);
   WorstF = fitness(end);
   for j = 1:pop
      X(j,:) = X(index(j),:);
   end
   curve(i) = GBestF;
end
Best_pos =GBestX;
Best_score = curve(end);
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]吕鑫,慕晓冬,张钧.基于改进麻雀搜索算法的多阈值图像分割[J].系统工程与电子技术, 2021.DOI:10.12305/j.issn.1001-506X.2021.02.05.

[2]胡春安,王丰奇,朱东林.改进麻雀搜索算法及其在红外图像分割的应用[J].红外技术, 2023, 45(6):605-612.

🌈4 Matlab代码实现

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐