多线程产生的原因

线程安全的主要来源于JMM的设计,主要集中在主内存和线程的工作内存而导致的内存可见性问题,以及重排序导致的问题,进一步知道了happens-before规则。线程运行时拥有自己的栈空间,会在自己的栈空间运行,如果多线程间没有共享的数据也就是说多线程间并没有协作完成一件事情,那么,多线程就不能发挥优势,不能带来巨大的价值。那么共享数据的线程安全问题怎样处理?很自然而然的想法就是每一个线程依次去读写这个共享变量,这样就不会有任何数据安全的问题,因为每个线程所操作的都是当前最新的版本数据。那么,在Java关键字synchronized就具有使每个线程依次排队操作共享变量的功能。很显然,这种同步机制效率很低,但synchronized是其他并发容器实现的基础,对它的理解也会大大提升对并发编程的感觉,从功利的角度来说,这也是面试高频的考点。好了,下面,就来具体说说这个关键字。

synchronized底层原理

synchronize底层原理是什么?我们先通过反编译下面的代码来看看Synchronized是如何实现对代码块进行同步的:

public class SynchronizedDemo {
    public void method() {
        synchronized (this) {
            System.out.println("Method 1 start");
        }
    }
}

在这里插入图片描述

关于这两条指令的作用,我们直接参考JVM规范中描述:

monitorenter :
Each object is associated with a monitor. A monitor is locked if and only if it has an owner. The thread that executes monitorenter attempts to gain ownership of the monitor associated with objectref, as follows:

• If the entry count of the monitor associated with objectref is zero, the thread enters the monitor and sets its entry count to one. The thread is then the owner of the monitor.

• If the thread already owns the monitor associated with objectref, it reenters the monitor, incrementing its entry count.

• If another thread already owns the monitor associated with objectref, the thread blocks until the monitor’s entry count is zero, then tries again to gain ownership.

这段话的大概意思为:
每个对象有一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程:
1、如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者。
2、如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1.
3.如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权。

monitorexit:
The thread that executes monitorexit must be the owner of the monitor associated with the instance referenced by objectref.
The thread decrements the entry count of the monitor associated with objectref. If as a result the value of the entry count is zero, the thread exits the monitor and is no longer its owner. Other threads that are blocking to enter the monitor are allowed to attempt to do so.

这段话的大概意思为:
执行monitorexit的线程必须是objectref所对应的monitor的所有者。
指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。

通过这两段描述,我们应该能很清楚的看出Synchronized的实现原理,Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。

我们再来看一下同步方法的反编译结果:
源代码:

public class SynchronizedMethod  {
    public synchronized void method() {
        synchronized (this) {
            System.out.println("Hello World!");
        }
    }
}

在这里插入图片描述
从反编译的结果来看,方法的同步并没有通过指令monitorenter和monitorexit来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了ACC_SYNCHRONIZED标示符。JVM就是根据该标示符来实现方法的同步的:当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。 其实本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。

锁获取和锁释放

从整体上来看,线程A的执行结果(a=1)对线程B是可见的,实现原理为:释放锁的时候会将值刷新到主内存中,其他线程获取锁时会强制从主内存中获取最新的值。另外也验证了2 happens-before 5,2的执行结果对5是可见的。
从横向来看,这就像线程A通过主内存中的共享变量和线程B进行通信,A 告诉 B 我们俩的共享数据现在为1啦,这种线程间的通信机制正好吻合Java的内存模型,正好是共享内存的并发模型结构。

synchronized优化

通过上面的讨论现在我们对synchronized应该有所印象了,它最大的特征就是在同一时刻只有一个线程能够获得对象的监视器(monitor),从而进入到同步代码块或者同步方法之中,即表现为互斥性(排它性)。这种方式肯定效率低下,每次只能通过一个线程,既然每次只能通过一个,这种形式不能改变的话,那么我们能不能让每次通过的速度变快一点了。打个比方,去收银台付款,之前的方式是,大家都去排队,然后去纸币付款收银员找零,有的时候付款的时候在包里拿出钱包再去拿出钱,这个过程是比较耗时的,然后,支付宝解放了大家去钱包找钱的过程,现在只需要扫描下就可以完成付款了,也省去了收银员跟你找零的时间的了。同样是需要排队,但整个付款的时间大大缩短,是不是整体的效率变高速率变快了?这种优化方式同样可以引申到锁优化上,缩短获取锁的时间,伟大的科学家们也是这样做的。
在聊到锁的优化也就是锁的几种状态前,有两个知识点需要先关注:
(1)CAS操作
(2)Java对象头,这是理解下面知识的前提条件。

什么是CAS?

使用锁时,线程获取锁是一种悲观锁策略,即假设每一次执行临界区代码都会产生冲突,所以当前线程获取到锁的时候同时也会阻塞其他线程获取该锁。而CAS操作(又称为无锁操作)是一种乐观锁策略,它假设所有线程访问共享资源的时候不会出现冲突,既然不会出现冲突自然而然就不会阻塞其他线程的操作。因此,线程就不会出现阻塞停顿的状态。那么,如果出现冲突了怎么办?无锁操作是使用CAS(compare and swap)又叫做比较交换来鉴别线程是否出现冲突,出现冲突就重试当前操作直到没有冲突为止。

CAS的操作过程

CAS比较交换的过程可以通俗的理解为CAS(V,O,N),包含三个值分别为:V 内存地址存放的实际值;O 预期的值(旧值);N 更新的新值。当V和O相同时,也就是说旧值和内存中实际的值相同表明该值没有被其他线程更改过,即该旧值O就是目前来说最新的值了,自然而然可以将新值N赋值给V。反之,V和O不相同,表明该值已经被其他线程改过了则该旧值O不是最新版本的值了,所以不能将新值N赋给V,返回V即可。当多个线程使用CAS操作一个变量时,只有一个线程会成功,并成功更新,其余会失败。失败的线程会重新尝试,当然也可以选择挂起线程
CAS的实现需要硬件指令集的支撑,在JDK1.5后虚拟机才可以使用处理器提供的CMPXCHG指令实现。
元老级的synchronized(未优化前)最主要的问题是:在存在线程竞争的情况下会出现线程阻塞和唤醒锁带来的性能问题,因为这是一种互斥同步(阻塞同步)。而CAS并不是武断的间线程挂起,当CAS操作失败后会进行一定的尝试,而非进行耗时的挂起唤醒的操作,因此也叫做非阻塞同步。这是两者主要的区别。

CAS的问题

1. ABA问题
因为CAS会检查旧值有没有变化,这里存在这样一个有意思的问题。比如一个旧值A变为了成B,然后再变成A,刚好在做CAS时检查发现旧值并没有变化依然为A,但是实际上的确发生了变化。解决方案可以沿袭数据库中常用的乐观锁方式,添加一个版本号可以解决。原来的变化路径A->B->A就变成了1A->2B->3C。Java这么优秀的语言,当然在Java 1.5后的atomic包中提供了AtomicStampedReference来解决ABA问题,解决思路就是这样的。
2. 自旋时间过长
使用CAS时非阻塞同步,也就是说不会将线程挂起,会自旋(无非就是一个死循环)进行下一次尝试,如果这里自旋时间过长对性能是很大的消耗。如果JVM能支持处理器提供的pause指令,那么在效率上会有一定的提升。
3. 只能保证一个共享变量的原子操作
当对一个共享变量执行操作时CAS能保证其原子性,如果对多个共享变量进行操作,CAS就不能保证其原子性。有一个解决方案是利用对象整合多个共享变量,即一个类中的成员变量就是这几个共享变量。然后将这个对象做CAS操作就可以保证其原子性。atomic中提供了AtomicReference来保证引用对象之间的原子性。

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐