"""

Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.

"""

import tensorflow as tf

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelBinarizer

# load data

digits = load_digits()

X = digits.data

y = digits.target

y = LabelBinarizer().fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)

def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):

# add one more layer and return the output of this layer

Weights = tf.Variable(tf.random_normal([in_size, out_size]))

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )

Wx_plus_b = tf.matmul(inputs, Weights) + biases

# here to dropout

Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)

if activation_function is None:

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b, )

return outputs

def compute_accuracy(v_xs,v_ys,v_keep_prob):

global prediction

y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:v_keep_prob})

correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:v_keep_prob})

return result

# define placeholder for inputs to network

keep_prob = tf.placeholder(tf.float32)

xs = tf.placeholder(tf.float32, [None, 64]) # 8x8

ys = tf.placeholder(tf.float32, [None, 10])

# add output layer

l1 = add_layer(xs, 64, 50, ‘l1‘, activation_function=tf.nn.tanh)

prediction = add_layer(l1, 50, 10, ‘l2‘, activation_function=tf.nn.softmax)

# the loss between prediction and real data

cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),

reduction_indices=[1])) # loss

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()

sess.run(tf.initialize_all_variables())

for i in range(500):

# here to determine the keeping probability

sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5})

if i % 50 == 0:

print(compute_accuracy(X_train, y_train,1),compute_accuracy(X_test, y_test,1))

原文:https://www.cnblogs.com/LiuXinyu12378/p/12495403.html

Logo

开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!

更多推荐