python关键词_pke是一个基于python的开源关键词(Keyphrase)提取工具包
pke - python keyphrase extractionpke is an open source python-based keyphrase extraction toolkit. It provides an end-to-end keyphrase extraction pipeline in which each component can be easily modified
pke - python keyphrase extraction
pke is an open source python-based keyphrase extraction toolkit. It provides an end-to-end keyphrase extraction pipeline in which each component can be easily modified or extended to develop new models. pke also allows for easy benchmarking of state-of-the-art keyphrase extraction models, and ships with supervised models trained on the SemEval-2010 dataset.
Table of Contents
Installation
To pip install pke from github:
pip install git+https://github.com/boudinfl/pke.git
Minimal example
pke provides a standardized API for extracting keyphrases from a document. Start by typing the 5 lines below. For using another model, simply replace pke.unsupervised.TopicRank with another model (list of implemented models).
import pke
# initialize keyphrase extraction model, here TopicRank
extractor = pke.unsupervised.TopicRank()
# load the content of the document, here document is expected to be in raw
# format (i.e. a simple text file) and preprocessing is carried out using spacy
extractor.load_document(input='/path/to/input.txt', language='en')
# keyphrase candidate selection, in the case of TopicRank: sequences of nouns
# and adjectives (i.e. `(Noun|Adj)*`)
extractor.candidate_selection()
# candidate weighting, in the case of TopicRank: using a random walk algorithm
extractor.candidate_weighting()
# N-best selection, keyphrases contains the 10 highest scored candidates as
# (keyphrase, score) tuples
keyphrases = extractor.get_n_best(n=10)
A detailed example is provided in the examples/ directory.
Getting started
Tutorials and code documentation are available at https://boudinfl.github.io/pke/.
Implemented models
pke currently implements the following keyphrase extraction models:
Citing pke
If you use pke, please cite the following paper:
@InProceedings{boudin:2016:COLINGDEMO,
author = {Boudin, Florian},
title = {pke: an open source python-based keyphrase extraction toolkit},
booktitle = {Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations},
month = {December},
year = {2016},
address = {Osaka, Japan},
pages = {69--73},
url = {http://aclweb.org/anthology/C16-2015}
}
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)