python保存类对象到文件_python 保存对象文件
之前用 R 语言一直感觉 .Rdata 格式的文件很好用,可以把每次执行的中间文件保存便于下次调用,刚熟悉 Python 还没接触这块知识,所以有时候做项目不太顺手,索性上网搜了下,整理如下:模型存档############## joblib 库from sklearn.linear_model import LogisticRegressionfrom sklearn.externals imp
之前用 R 语言一直感觉 .Rdata 格式的文件很好用,可以把每次执行的中间文件保存便于下次调用,刚熟悉 Python 还没接触这块知识,所以有时候做项目不太顺手,索性上网搜了下,整理如下:
模型存档
#############
# joblib 库
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
# 模型保存
lr_model = LogisticRegression()
joblib.dump(lr_model, 'xx.model')
# 模型载入
lr_model = joblib.load('xx.model')
#############
# pickle 库
# 模型保存
import pickle
with open('lr_model.pickle', 'wb') as fp:
pickle.dump(lr_model, fp)
# 模型载入
with open('lr_model.pickle', 'rb') as fp:
lr_model = pickle.load(fp)
命令行参数解析
import argparse
# 定义参数解析
def build_arg_parser():
parser = argparse.ArgumentParser(description='Trains the classifier')
parser.add_argument("--feature-map-file", dest="feature_map_file", required=True,
help="Input pickle file containing the feature map")
parser.add_argument("--model-file", dest="model_file", required=False,
help="Output file where the trained model will be stored")
return parser
args = build_arg_parser().parse_args()
feature_map_file = args.feature_map_file
model_file = args.model_file
对象保存
#############
# pickle 库
import pickle
x, y = 1, range(10)
with open('xx.pickle', 'wb') as fp:
# 通过传递protocol = -1到dump()来减少文件大小
pickle.dump([x, y], fp)
# 对象载入
with open('xx.pickle', 'rb') as fp:
x, y = pickle.load(fp)
print(x)
#############
# _pickle 库
# 对象保存
import _pickle as cpickle
x, y = 1, range(10)
with open('xx.pickle', 'wb') as fp:
# 通过传递protocol = -1到dump()来减少文件大小
cpickle.dump([x, y], fp)
# 对象载入
del x, y
with open('xx.pickle', 'rb') as fp:
x, y = cpickle.load(fp)
print(x)
############
# dill 库
import dill
# 文件保存
filename = 'globalsave.pkl'
dill.dump_session(filename)
# 文件载入
dill.load_session(filename)
############
# 其他库如:pmml,shelve
开放原子开发者工作坊旨在鼓励更多人参与开源活动,与志同道合的开发者们相互交流开发经验、分享开发心得、获取前沿技术趋势。工作坊有多种形式的开发者活动,如meetup、训练营等,主打技术交流,干货满满,真诚地邀请各位开发者共同参与!
更多推荐
所有评论(0)